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Preface 

A key driving factor for biometrics is the widespread national and international deploy-
ment of biometric systems that has been initiated in the past two years and is about to 
accelerate. While nearly all current biometric deployments are government-led and prin-
cipally concerned with national security and border control scenarios, it is now apparent 
that the widespread availability of biometrics in everyday life will also spin out an ever-
increasing number of (private) applications in other domains. Crucial to this vision is the 
management of the user’s identity, which does not only imply the creation and update of 
a biometric template, but requires the development of instruments to properly handle all 
the data and operations related to the user identity. 

COST Action 2101 on Biometrics for Identity Documents and Smart Cards has op-
erated as a valuable and effective platform for close collaboration of European scien-
tists from academia and industry researching biometrics for identity documents and 
smartcards. This has led to the continuous advances achieved in various classes of 
biometrics and their implementations in the identity management domain. These con-
tributions to knowledge in this field were first presented at the First European Work-
shop on Biometrics and Identity Management (BioID 2008) organized in Roskilde, 
Denmark during May 7–9, 2008.  

The scope of this first COST 2101 open workshop covered all the research aspects of the 
Action, from biometric data quality, through biometric templates and modalities, to biomet-
ric attacks and countermeasures, as well as biometric interfaces and standards. More infor-
mation about COST Action 2101 may be found at http://www.cost2101.org/. This site also 
hosts the official websites for the BioID 2008 workshop at http://www.cost2101.org/ 
BIOID2008. 

These proceedings contain the revised papers that were presented during the work-
shop. Position papers by invited speakers presented at the workshop are also included. 
The volume is divided into several sections: 

 

1. Biometric Data Quality 
2. Biometrical Templates: Face Recognition 
3. Biometrical Templates: Other Modalities 
4. Biometric Attacks and Countermeasures 
5. Biometric Interfaces, Standards and Privacy 
6. Position Papers by Invited Speakers on Biometrics and Identity Management 

 

The first section is concerned with the quality of biometric data. Not only on how 
to quantify and qualify data representing unique biometric characteristics, but also to 
provide classifications for comparison of different biometric-based solutions to iden-
tity management. 

The next two sections are concerned with biometrical templates, firstly focusing on 
face recognition, and highlight several aspects on the contextual conditions such as 
pose and illumination. A new database is presented in two papers that includes several 



 Preface VI 

facial expressions. Secondly other modalities like speech, signature, and fingerprint 
are researched upon. In Sect. 4 several contributions are dedicated to the important 
aspect of security and trust in biometrical applications. 

In Sect. 5, several systems and interfaces are introduced as well as standards for  
biometrics, and the last section concludes with papers addressing the current state in the 
art of biometrics and identity management. Ben Schouten et al. focus on 19 urgent  
research topics (the research agenda) for biometrics and identity management. Andrzej 
Drygajlo lays out the actions within COST 2101 to address these issues. Emilio Mordini 
discusses the ethical issues related to biometrics and John Gill investigates authentication 
systems and applications for the blind and shows how solutions are applicable for a much 
broader set of vulnerable groups (outliers). 

We are grateful for all contributions towards making the workshop and these pro-
ceedings a success. BioID 2008 was an initiative of the COST Action 2101 on Bio-
metrics for Identity Documents and Smart Cards. It was supported by the EU Frame-
work 7 Program. Other sponsors of the workshop were: The European Biometrics 
Forum, The Danish Biometrics Research Project Consortium, the UK Biometrics 
Institute, the Institution of Engineering and Technology, Fontys University of Applied 
Science and Roskilde University. 

Extended thanks go to everyone who made the first workshop a success and a fruit-
ful platform for the exchange and dissemination of results within biometrics and iden-
tity management at future workshops as well; COST Action 2101 has planned the 
second workshop to be held in the fall of 2009 in Madrid, Spain. 

The Chairs want to extend their thanks to the nine members of the Program Com-
mittee; who had a tough, but enjoyable, job of reviewing the submissions. The final 
decision was made by the Chairs. 

 
 

August 2008 Ben Schouten 
Andrzej Drygajlo 

Niels Christian Juul 
Michael Fairhurst 
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Quality-Based Score Normalization and Frame
Selection for Video-Based Person Authentication

Enrique Argones Rúa, José Luis Alba Castro, and Carmen Garcı́a Mateo�

Signal Technologies Group,Signal Theory and Communications Department
University of Vigo

{eargones,jalba,carmen}@gts.tsc.uvigo.es

Abstract. This paper addresses the incorporation of quality measures to video-
based person authentication. A theoretical framework to incorporate quality mea-
sures in biometric authentication is exposed. Two different quality-based score
normalization techniques are derived from this theoretical framework. Further-
more, a quality-based frame selection technique and a new face image quality
measure are also presented. The ability of this quality measure and the proposed
quality-based score normalization techniques and quality-based frame selection
technique to improve verification performance is experimentally evaluated in a
video-based face verification experiment on the BANCA Database.

1 Introduction

Face verification is one of the most important and challenging biometric verification
modalities. Face verification systems can be used in a wide variety of applications, includ-
ing building access and web-based access to services among others, since low cost sensors
such as web-cams can be used for image acquisition. However, face verification systems
are sensitive to illumination changes, partial occlusions of the face, shadowing, changing
background, low resolution problems, image noise, pose and appearance changes.

The influence of some of these factors can be diminished by increasing the intra-
user variability registered in the user template. The incorporation of the full video se-
quence to the video recognition system in both enrolment and verification processes
provides much more information than a reduced set of still images, enabling a statis-
tically significant improvement in verification performance [Phillips et al(2003)]. The
video-based person authentication system used in this paper uses a Gaussian mixture
model-universal background model (GMM-UBM) scheme [Alba Castro et al(2008)].
Each location in the face is modeled by a GMM-UBM, which is adapted to the video
frames in the user enrolment video by means of the MAP algorithm. This approach is
able to encode the statistically discriminant information at each location of the face of
the user.

However, mismatch in quality related factors between enrolment and test sessions
can lead to degraded performance even though enough discriminant information is en-
coded in the user template. The use of quality measures [Fiérrez Aguilar et al(2005)]
can somehow reduce the influence of quality mismatches in the test phase.

� This work has been partially supported by Spanish Ministry of Education and Science (project
PRESA TEC2005-07212), by the Xunta de Galicia (project PGIDIT05TIC32202PR).

B. Schouten et al. (Eds.): BIOID 2008, LNCS 5372, pp. 1–9, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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This paper provides a theoretical framework that incorporates the quality measures
into the verification process. Starting from this theoretical framework, two quality-
based score normalization techniques are derived. A new quality measure for frontal
face images and a new quality-based frame selection technique are also proposed.
The aim of this quality-based frame selection technique is to select the high quality
frames in the test video sequence in order to improve verification performance. Ex-
periments on the BANCA Database [Bailly-Baillière et al(2003)] will show the effec-
tiveness of the combined use of the quality-based score normalization and quality-based
frame selection techniques when compared to the baseline video-based face verification
system.

The paper is outlined as follows: Section 2 describes the GMM-UBM video-based
identity verification system. Section 3 describes the theoretical framework and tech-
niques derived to incorporate the quality measures into the verification process. The
quality-based frame selection is derived and described in Section 5. The proposed
quality measure for frontal face images is presented in Section 6. The experimental
framework for the experiments carried out in this paper is described in Section 7. Ex-
periments to check the effectiveness of these techniques are shown in Section 8. Exper-
imental results are discussed in Section 9, and paper is finally drawn to conclusions in
Section 10.

2 Video-Based Face Verification

The video-based face verification system first detects the face region and the eyes using
a face detector based on a cascade of boosted classifiers which use an extended set of
Haar-like features [Lienhart and Maydt(2002)]. Face is then rotated and scaled in order
to set the eyes position in the same place for all the faces. Let us denote the video
frames sequence where a face is detected as V = {I V ,1, . . . ,I V ,NV }, where NV is the
number of frames where a face is detected. Gabor jets [Wiskott et al(1997)] (M = 40
responses of Gabor filters with 5 scales and 8 orientations) are extracted at fixed points
along a rectangular grid of dimensions D = 10×10 superimposed on each normalized
face image. Frame I V ,k is characterised by the moduli of all the extracted Gabor jets
I V ,i = {J V ,i

1 , . . . ,J V ,i
D }. The modulus of the k-th Gabor jet extracted from the i-th

frame in V is denoted as J V ,k
i = {aV ,k

i,1 , . . . ,aV ,k
i,M }.

GMM-UBM verification paradigm is adapted to video-based verification: a 64 mix-
tures UBM is trained for each grid location and then it is adapted to the corresponding
jets obtained from the user enrolment video by means of the MAP technique. Indepen-
dence between the distributions of the jets from each node is assumed in order to avoid
the curse of dimensionality in the UBM training. Gaussian mixtures are constrained to
have diagonal covariance matrixes. The verification score for the video V and claimed
identity u is computed as the following loglikelihood ratio [Alba Castro et al(2008)]:

sV = Log

⎛⎝NV

∏
i=1

D

∏
k=1

fu,k

(
J V ,i

k

)
fUBM,k

(
J V ,i

k

)
⎞⎠ (1)
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3 Incorporating Quality Measures in Biometric Verification

Starting from the theoretical framework exposed in [Kryszczuk and Drygajlo(2007)],
the verification scores S produced by classes C = 0 or C = 1 (false and true identity
claims respectively) are actually computed from input vectors x which are contami-
nated by a noise random process N that produce noise vectors n: x = Φ (v,n), where v
are the clean vectors produced by the corresponding class. It is reasonable to assume
that the verification scores S are influenced by the noise process, but the noise value
n is not directly observable. However, some measures, called in general quality mea-
sures [Fiérrez Aguilar et al(2005)], performed over the observable noisy signal x, can
hopefully provide us with useful information about the noise.

We can model a quality measure as a random process Q that produces an output
measurement q which is related to the noise n present in the noisy vectors x. In general,
we can write q = Ω (x) = Ω (Φ (v,n)). When we have a set of scores associated to
known values of the quality measure Q and class C, the conditional probability density
function p(s|C,Q) can be estimated.

Since the quality measure Q depends only on the quality of the biometric signal, it
is reasonable to assume that it is class independent: p (q|C = 0) = p(q|C = 1). Besides,
if we assume equiprobable classes then P(C = 0) = P(C = 1), and thus the Bayesian
verification decision is taken by:

C = c ⇐⇒ p(s|C = c,Q = q) > p(s|C = 1− c,Q = q) (2)

Which conditions must Q hold for improving the verification performance with re-
spect to classical verification solutions? The first step in order to address this ques-
tion is to define the boundary B between classes C = 0 and C = 1 in the sq-plane:
B = {(s,q)|p(s|C = c,Q = q) = p(s|C = 1− c,Q = q)}. This boundary can also be de-
fined by means of an application that relates each quality measure value q with the score
values {s1, . . . ,sp} such that (q,si) ∈ B. Taking into account the definition of verifica-
tion scores, class 1 (true identity claims) should be more likely for higher values of
s, and therefore we can assume that the boundary application associates each quality
factor value q with an unique verification score value s. Thus an injective boundary
function Θ (q) can be defined such that Θ(q) = s ⇐⇒ (s,q) ∈ B, and the verification
decision can be performed according to the next equation:

C = 1 ⇐⇒ s > Θ(q) (3)

Verification performance of non quality-aided and quality-aided systems can be com-
pared in terms of the Bayesian error. The Bayesian error for a non quality-aided system
is:

Eclassical =
∫ +∞

−∞

{∫ θ

−∞
p(s,q|C = 1)ds+

∫ +∞

θ
p(s,q|C = 0)ds

}
dq (4)

The Bayesian error for the new framework is defined as:

Equality =
∫ +∞

−∞

{∫ Θ (q)

−∞
p(s,q|C = 1)ds+

∫ +∞

Θ (q)
p(s,q|C = 0)ds

}
dq (5)
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If the threshold application Θ(q) is optimal in terms of Bayesian error then Eclassical ≥
Equality, and the equality holds only if θ = Θ(q)∀q. Therefore there is a demonstrated
theoretical gain whenever the optimal quality-dependent threshold Θ(q) is not a con-
stant in q. In other words, the necessary and sufficient condition to obtain a performance
gain when using a quality factor is that the optimal threshold between classes is not a
constant when expressed as a function of this quality factor.

4 Q-Based Score Normalization

A solution to determine the threshold as a function of Q is to divide the problem in many
simple independent problems. If the Q space EQ is divided in a number K of disjoint and
connected neighbourhoods Ni such that EQ = N1 ∪·· · ∪NK and Ni ∩N j = /0 ∀i �= j,
then it is easy to determine acceptable thresholds θi for each neighbourhood Ni.

This formulation can be easily adapted to the case that many quality measures are
provided for one verification modality. In the simple case that only one quality measure
is provided, neighbourhoods are intervals defined by their limits Ni = (li, li+1].

A reasonable approach to build these intervals must take into account that the relia-
bility of any threshold estimation is dependent on the number of verification attempts
that belong to that interval. Thus, EQ is divided in intervals that contain approximately
the same number of verification attempts.

Let us denote the train set as T = {(s1,q1,c1) , . . . ,(sNT ,qNT ,cNT )}, and without
generalisation loss, let us suppose they are sorted by the value of the quality factor:
qi ≤ q j ∀i < j. If we define a lower bound for the quality measure q0 = q1 − ε , where ε
is an arbitrarily small positive constant, then intervals limits can then be defined as:

li =
1
2

(
q⌊ (i−1)NT

K

⌋+ q⌈ (i−1)NT
K

⌉) ∀i ∈ {1, . . . ,K + 1} (6)

An optimal threshold θi can be easily found for each neighbourhood Ni. If a soft be-
haviour of the thresholding function Θ(q) is assumed, then a good approximation of
Θ(q) can be obtained interpolating the thresholds θi. 0th-order and 1st-order interpola-
tion close solutions are shown in Sections 4.1 and 4.2 respectively.

The Q-based normalized score is finally computed as sQ = s−Θ(q).

4.1 0th-Order Threshold Interpolation

0th-order threshold interpolation leads us to a stepwise constant thresholding function
that can be formally defined as:

Θ(q) =

⎧⎨⎩θ1 ∀q ≤ l1
θi ∀q ∈ Ni

θK ∀q > lK+1

(7)
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4.2 1st-Order Threshold Interpolation

A 1st-order threshold interpolation leads us to a stepwise linear thresholding function
that can be formally defined as:

Θ(q) =

⎧⎪⎪⎨⎪⎪⎩
2 θ2−θ1

l3−l1
q + θ1(l2+l3)−θ2(l1+l2)

l3−l1
∀q ≤ l1+l2

2

2 θi+1−θi
li+2−li

q + θi(li+1+li+2)−θi+1(li+li+1)
li+2−li

∀q ∈
[

li+li+1
2 ,

li+1+li+2
2

]
2 θK−θK−1

lK+1−lK−1
q + θK−1(lK+lK+1)−θK(lK−1+lK)

lK+1−lK−1
∀q ≥ lK+lK+1

2

(8)

5 Quality-Based Frame Selection

Quality measures provide information about the reliability of a given score: a verifica-
tion decision taken on the basis of a high quality frontal face image will be more reliable
than a decision taken on the basis of a poor quality frontal face image. This hypothesis
will be verified later on Section 8.

Qmin Qmax

Q

NQ

Nmax

Nmin

Fig. 1. Number of frames selected as a function of the mean value of the quality measure all along
the video sequence

A video sequence has not a constant quality. Blurring provoked by fast movements of
the user, heavy pose changes, partial occlusions and other factors can affect some frames
in the video whilst the other frames can result unaffected. The idea behind the proposed
quality-based frame selection is to keep the most high quality frames in the video for
verification, whilst low quality frames are discarded. Besides, a video sequence with a
low mean quality measure value will have only a few frames with a high quality, whilst
a video with a high mean quality measure value will have many frames with a high
quality. Therefore the proposed frame selection keeps the NQ best frames (those with
the highest values of the quality measure) in a video V , where NQ grows linearly with
the mean quality measure value all along the video QV . If NQ is bigger than the number
of frames in the video NV , then all the frames in the video are processed. The following
equation defines this dependence:

NQ =

⎧⎨⎩
Nmin if QV < Qmin

(QV −Qmin) Nmax−Nmin
Qmax−Qmin

+ Nmin if Qmin ≤ QV ≤ Qmax

Nmax if QV > Qmax

(9)

N = min{NQ,NV } (10)
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Figure 1 shows the dependence between N and the mean value of the quality
measure Q.

6 Frontal Face Image Quality Measure

The proposed quality measure for frontal face images takes into account two issues:

General image quality. The sharpness of the image (associated to a good focus and
slow distortion due to fast object movement) is a good general quality measure-
ment. Given an image I of dimensions H ×W , its first order derivative calculated
with the Sobel operator ∇xyI , and its second order derivative calculated with the
Laplacian operator ∇2

xyI , two different coefficients describing the sharpness of the
image are derived:

ρsob (I ) =
‖∇xyI ‖

HW
(11)

ρlapl (I ) =
‖∇2

xyI ‖
HW

(12)

Frontal face specific quality. The face symmetry is used as a frontal face specific
quality factor. Faces with a non frontal pose or with a large rotation will provide a
bad symmetry coefficient. Given a frontal face image I , we define the horizontally
flipped version of I as fI . The asymmetry coefficient of I is defined as:

ρasym (I ) =
‖I − fI ‖

‖I ‖ (13)

However these measures by themselves are not enough to characterise the quality

mismatch between the enrolment video and the test video. Let us call ρ̂enrol
x to the

mean quality coefficient calculated along the whole enrolment video. Relative quality
coefficients are then defined as:

ρ relative
x (I ) = ρx (I )− ρ̂enrol

x (14)

All the coefficients involved in the frontal face image quality measure are normalized
dividing its value by their standard deviation. Finally, the frontal face quality image
measure and the frontal face video quality measure are defined as:

qI = −
[

ρasym (I )
σρasym

+
ρ relative

asym (I )
σρ relative

asym

]
+ ∑

x∈{sob,lapl}

[
log(ρx (I ))

σlog(ρx)
+

ρ relative
x (I )
σρ relative

x

]
qV = ∑

I ∈V

qI (15)

7 Experimental Framework: BANCA Database

The BANCA Database [Bailly-Baillière et al(2003)] is divided in two disjoint groups
g1 and g2 with 13 males and 13 females each. Each user records 12 video sessions,
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where one true and one false identity claim is performed. False identity claims are
performed always to users with the same gender and in the same group. Sessions are
divided in 3 different environments: controlled (good quality recordings), degraded
(recordings artificially degraded) and adverse (bad quality recordings). Four sessions
are recorded in each environment. The experiments conducted on this paper follow the
Pooled protocol defined in [Bailly-Baillière et al(2003)]. This protocol uses one true
identity claim from the controlled conditions for enrolment purposes, and the rest of
the database for testing. This protocol provides us with a good quality enrolment and
a wide quality range in the test attempts. The Weighted Error Rate (WER) is used for
performance measurement:

WER(ρ) =
ρFAR + FRR

1 + ρ
, (16)

where FAR stands for False Acceptance Rate and FRR stands for False Rejection Rate.
For each of the values of ρ = {1,10}, thresholds are obtained for each group. Then this
thresholds are used in the other group and the test WER is obtained. This performance
measure allows us to evaluate the system performance in conditions where FAR and
FRR must be balanced (ρ = 1) or FAR is more critical (ρ = 10).

8 Experiments

In the experiments conducted on this paper we test the verification performance of three
systems. The first one is the video-based face verification system described in Section 2.
This system is used as a baseline. The second system is an improved version of the
baseline system: the Q-based score normalization techniques described in Section 4 are
incorporated into the baseline system. Finally, the third system is an improved version
of the second system: the Q-based frame selection strategy described in Section 5 is
incorporated into the second system.

The Q-based normalization system needs one only parameter: the number of quality
bins that group the identity claims. After some experiments this number was finally
fixed to 4 for convenience. On the other hand, the Q-based frame selection technique
requires some parameters to be fixed. These parameters depend on the mean length of
the videos to be tested and the range of the quality measure. In our experiments we used
Qmax = 0, Qmin = −20, Nmax = 550 and Nmin = 100.

Figure 2 shows the true and false score distribution as a function of the frontal face
image quality factor described in Section 6 and the DET curve for group 1 of the
BANCA users. Optimal constant threshold and the a posteriori thresholds obtained for
this group by the quality-based 0th-order and 1st-order score normalization techniques
are also plotted for comparison purposes.

Table 1 shows the WER(1.0) and W ER(10) face verification performance for the
three tested systems.

9 Discussion

Figure 2 (left) shows the thresholds estimated using both 0th-order and 1st-order score
normalization techniques and the threshold obtained when the quality measure is not
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Table 1. W ER(0.1), W ER(1.0) and WER(10) face verification performance for the reference
system, the Q-based score normalization and the joint Q-based score normalization and frame
selection

System Group WER(10) WER(1.0)

Reference 1 9.09(6.34,11.84) 16.72(12.54,20.90)
System 2 5.23(4.33,6.13) 11.28(7.45,15.11)

All 7.14(5.69,8.59) 13.98(11.09,16.86)

0th-order Q-norm 1 6.63(4.63,8.62) 13.83(9.84,17.83)
2 6.49(4.40,8.58) 9.48(5.90,13.06)
All 6.56(5.11,8.01) 11.64(8.90,14.38)

1st-order Q-norm 1 6.05(4.05,8.05) 14.28(10.34,18.22)
2 7.13(4.50,9.76) 8.41(5.01,11.81)
All 6.60(4.94,8.27) 11.32(8.64,14.00)

0th-order Q-norm 1 6.25(4.44,8.06) 11.83(7.91,15.75)
and Q-selection 2 7.56(5.18,9.95) 9.27(5.73,12.82)

All 6.92(5.42,8.43) 10.54(7.89,13.19)

1st-order Q-norm 1 6.08(4.08,8.08) 12.83(8.80,16.87)
and Q-selection 2 6.95(4.56,9.33) 8.20(4.85,11.56)

All 6.52(4.96,8.08) 10.49(7.85,13.12)
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Fig. 2. Score distribution and a posteriori thresholds found for the group 2 of BANCA users (left)
and DET curve of the three video-based face recognition systems for group 1 (right)

taken into account (the constant black line). It is clear that quality-based approaches lead
to non constant class boundaries and therefore the incorporation of this quality measure
into the verification process will provide improvements in verification performance. Fur-
thermore, this Figure also shows that high-quality attempts are associated, as hypothe-
sized in Section 5, with larger reliability values than low-quality attempts, where clouds
of points belonging to true and false identity claims are more overlapped. This motivates
the use of the quality-based frame selection algorithm proposed in this paper.

Experimental results shown in Table 1 show that the incorporation of the frontal face
quality measure presented in Section 6 using the Q-norm obtains small improvements
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in W ER(10) (a quality measure designed to evaluate biometric systems in high security
environments). Most important, statistically significant improvements are obtained in
WER(1.0) when the Q-based frame selection algorithm is also incorporated into the
verification system. Figure 2 (right) shows that DET curves of quality-aided systems
(using the Q-based frame selection or not) are very similar. However, results in Table 1
show that frame selection provides improvements in verification performance. This in-
dicates that a priori thresholds fit better after the frame selection, enabling better WER
results.

10 Conclusions

This paper presented a theoretical framework and two practical solutions to incorporate
quality measures into any verification process. A quality-based frame selection tech-
nique has been also presented. Besides, a new quality measure for frontal face images
was presented. This quality aids were incorporated into a GMM-UBM video-based
face verification system based on Gabor wavelets. Experiments on the P protocol of
the BANCA Database demonstrate the convenience of the proposed face image quality
measure and the effectiveness of both quality-based score normalization and quality-
based frame selection techniques.
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Abstract. When a person passes by a surveillance camera a sequence of image 
is obtained. Before performing any analysis on the face of a person, the face 
first needs to be detected and secondary the quality of the different face images 
needs to be evaluated. In this paper we present a system based on four simple 
features including out-of-plan rotation, sharpness, brightness and resolution, to 
assess the face quality in a video sequence. These features are combined using 
both a local scoring system and weights. The system is evaluated on two data-
bases and the results show a general agreement between the system output and 
quality assessment by a human. 

Keywords: Face quality assessment, face detection, out-of-plan rotation,  
surveillance video. 

1   Introduction 

Considering a person passing by a surveillance camera, a sequence of images of that 
person is captured by the camera. Depending on the application, most of these images 
are useless due to problems like not facing the camera, motion blur, darkness and too 
small size of the region of interest in that image. Usually considering some (one or two) 
of the best images is sufficient. There is therefore a need for a mechanism which choos-
es the best image(s) in terms of quality in a sequence of images. This is called Quality 
Assessment. Image quality assessment is useful in surveillance cameras and also in 
other applications such as compression, digital photography to inform the user that a 
low- or high-quality photo had been taken, printing to encourage (or discourage) the 
printing of better (or poorer) pictures and image management to sort out good from poor 
photos [1]. This paper is concerned with Face Quality Assessment (FQA). 

In different works related to FQA [1-5], different features of the face have been 
used including: Sharpness, illumination, head rotation, face size, presence of skin 
pixels, openness of eyes and red eyes. Xiufeng et al. [4] have tried to standardize the 
quality of face images by facial symmetry based methods. Adam and Robert [5] have 
extracted 6 features for each face and after assigning a score to each feature, combines 
them into a general score. Subasic et al. [2] consider more features and interpret the 
scores related to each feature as a fuzzy value. Fronthaler et al. [3] have studied orien-
tation tensor with a set of symmetry descriptors to assess the quality of face images. 

In a face quality assessment system there are two problems to be dealt with: Re-
duction the computation and increasing the reliability of the system. In this paper we 
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deal with the first problem by using few and simple features. We have analyzed dif-
ferent features and found that 4 features are sufficient for FQA. These features are 
out-of-plan-rotation, sharpness, brightness, and face size. In order to deal with the 
second problem, which is increasing the reliability of the system, we have used local-
ly scoring technique.  

 

Fig. 1. Block Diagram of the proposed system 

The block diagram of the proposed system is shown in figure 1. Given a sequence 
of color images, the face detection step extracts the face region(s) for each image and 
feeds them to the face quality assessment block. In this step the quality of the faces 
for each image is computed and at the end of the sequence the best face for each indi-
vidual in this sequence is chosen and fed to an application for further processing. 

Since some of the features used in the face detection step are also used by the face 
quality assessment block we briefly describe it in the next section. In Section 3 the 
assessment process is presented and section 4 shows the experimental results and 
finally section 5 concludes the paper. 

2   Face Detection 

Face detection is not the main focus of this paper but since some of the extracted 
features for the face(s) in this block are used in the assessment process too, we briefly 
describe it here.  

Given a color image, first of all, according to a Gaussian model of skin color, a 
probability image of the input image is produced. Then using an adaptive threshold, 
this probability image is segmented to a binary one which has the skin regions sepa-
rated from the non-skin ones. Here after a cascading classifier using the extracted 
features for each region decides if this region is a face or not (See figure 2.). 

 

Fig. 2. Face detection process, From left to right: Input color image, its probability and  
segmented counterpart and detected faces 
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The extracted features for each face include: face size, center of the mass and 
orientation of the face, number of holes inside the face, the holes area to its surround-
ing area. For more details regarding the face detection the reader is referred to [6]. 

3   Quality Assessment 

For each face region detected by the Face Detection, we use both some of the extracted 
features from the face detection block, and also new features to assess the quality of 
them. For each feature we assign a locally computed score so that we can decide which 
image is the best in terms of quality in the given sequence of images. The following 
subsections describe the details of these features and the scoring process. 

3.1   Pose Estimation: Least Out-of-Plan Rotated Face(s)  

This feature is one of the most important features in assessing the usability of the 
face, because wide variation in pose can hide most of the useful features of the face. 
The previous face quality assessment systems [2, 4, 5] have involved facial features 
like vertical position of the eyes, distance between the two eyes and vertical symme-
try axis to estimate the pose of the face. It is obvious that most of these features may 
be hidden in various conditions like having spectacles or different lightening condi-
tion or even in rotations more than 60° [5]. Hence using the facial features to estimate 
the pose of the face cannot be reliable. Furthermore in the quality assessment the 
exact rotation of the face is not important but choosing the least rotated face is. So, we 
deal with the face as a whole, and calculate the difference between the center of mass 
and the center of the detected face region. Whenever the rotation of the face increases 
the difference between these two points increases too. 

Given a face in a binary image as shown in figure 3, we calculate the center of 
mass using the following equation:  

௠ݔ ൌ ∑ ∑ ܾ݅ሺ݅, ݆ሻ௠௝ୀଵ௡௜ୀଵ ܣ , ௠ݕ ൌ ∑ ∑ ݆ܾሺ݅, ݆ሻ௠௝ୀଵ௡௜ୀଵ ܣ  

 
(1) 

 

where ሺݔ௠,  ௠ሻ is the center of mass, b is the binary image containing the detectedݕ
region as a face, m is the width, n is the height of the detected region and A is the area 
of this region. 

 

Fig. 3. Center of mass (+) and center of the region (*) 
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Then we calculate the center of the region detected as a face using the equation 2: 
௖ݔ  ൌ ଶݔ െ ଵ2ݔ , ௖ݕ ൌ ଶݕ െ ଵ2ݕ  (2) 
 

where ݔଵ ܽ݊݀ ݔଶ are the right most and the left most pixel in the face region and ݕଵ ܽ݊݀ ݕଶ are the lowest and top pixel, respectively, in this region as shown in figure 
3. Now we calculate the distance between these two centers as: 

ܦ  ൌ ඥሺݔ௖ െ ௠ሻଶݔ ൅ ሺݕ௖ െ  ௠ሻଶ (3)ݕ
 

The minimum value of this distance in a sequence of images gives us the least out-of-
plan rotated face as shown in figure 4. To convert this value to a local score in that 
sequence we use the following equation for each of the images in the sequence: 

 ଵܵ ൌ ܦ௠௜௡ܦ  (4) 
 

where ܦ௠௜௡ is the minimum value of the D in the given sequence.  

 

Fig. 4. A sequence of different head poses and the associated values for the distance and ࡿ૚ 

Since the center of mass and the detected region are known from the face detection 
block the only computation for obtaining this feature is equation 3. The technique 
used by [5, 7] in order to compute this feature, involves the analysis of gradients to 
locate the left and right sides of face as well as the vertical position of the eyes. From 
these values the approximate location of the eyes is estimated and the brightest point 
between the eyes is expected to lie on the face's axis of symmetry. Their method is not 
effective when subjects are wearing glasses, or when faces are not close to frontal. 
While our method is robust in these cases (see the following figure). 

 

Fig. 5. The introduced feature in presence of spectacles and the associated scores 

3.2   Sharpness 

Since in real world applications the objects are moving in front of the camera, it is 
possible that the captured image is affected by motion blur, so defining a sharpness 
feature can be useful for FQA.  
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Fig. 6. An image with different sharpness conditions and the associated scores 

Well-focused images, which have a better sharpness compared to blurring images, 
should get a higher score for this feature. Following [8], if ܽሺݔ,  ሻ be a part of the imageݕ
which contains the face, ݈ܽሺݔ,  ሻ be the result of applying a low-pass filter to it,  then theݕ
average value of the pixels of the following equation is the sharpness of the face: 

ܧ  ൌ ,ݔሺܽሺݏܾܽ ሻݕ െ ݈ܽሺݔ,  ሻሻ (5)ݕ
 

Since it is difficult, at least computationally, to consider an upper limit for the best 
value of sharpness for all face images in order to have an acceptable normalization, 
we have used a local maximum. In this way, after calculating the sharpness for all of 
the chosen faces we assign the following score to the sharpness of each of them: 

 ܵଶ ൌ  ௠௔௫ (6)ܧܧ

 

where ܧ௠௔௫ is the maximum value of the sharpness in this sequence. Figure 6 shows 
some images of one person with different values in sharpness and their associated 
scores. 

3.3   Brightness 

Dark images of a face are in general not usable, so we need a way to measure the 
brightness of the face. Since the region of the face is usually a small region then we 
can consider the average value of the illumination component of all of the pixels in 
this region as the brightness of that region. So the following score determines the 
brightness of the image: 

 ܵଷ ൌ  ௠௔௫ (7)ܤܤ

 

where ܤ௠௔௫ is the maximum value of the brightness in this sequence. Figure 7 shows 
some images of one person in different brightness conditions and their associated 
scores. 

 

Fig. 7. An image with different brightness conditions and their associated score 
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The brighter the image, the higher the score, yields the risk of favoring too bright 
images. In the real surveillance sequences too bright images are uncommon and in the 
case of a too bright image a face detector is highly to disregard the face anyway. 

3.4   Image Resolution 

Faces with higher resolution can yield better results than lower resolution ones. But it 
is only true up to a specific limit [5]. This limit depends on the application which is 
going to use the face after assessing its quality. But usually considering 50 and 60, 
respectively, for the width and height of the face is suitable [5, 6]. So we can define 
the score related to the image resolution as follows: 

ସݏ  ൌ min ሼ1, 50݄ݐ݀݅ݓ ൈ 60ݐ݄݄݃݅݁ ሽ (8) 

3.5   Choosing the Best Face in a Given Sequence 

After calculating the four above mentioned features for each of the images in a given 
sequence, we combine the scores of these features into a general score for each image, 
as shown in the following equation: 

 ܵ ൌ ∑ ∑௜ସ௜ୀଵݏ௜ݓ ௜ସ௜ୀଵݓ  (9) 

 

where ݏ௜ are the score values for the above features and ݓ௜  the associated weights for 
each score. The images are sorted based on their combined scores and depending on 
the application, one or more images with the greatest values in S are considered as the 
highest quality image(s) in the given sequence. 

4   Experimental Evaluations 

We have used both still images and movie samples to evaluate our system. The still 
images are from the FRI CVL [9] database (DB1). This database consists of se-
quences of 114 individuals. Each sequence has 7 images with different head rotation 
(figure 5). Since the images in this database do not have wide variations in sharpness, 
brightness and size we have used them mainly for assessing the first feature. If the 
other features of the face have not had wide variations, the least rotated face can give 
us the best face in terms of the visibility of the facial features. 

In order to assess the other features as well as the first feature, we have used the 
video dataset prepared for the Hermes project [10] (DB2). This dataset contains 48 
sequences (6 videos for each of the 8 participants) where these people walk towards a 
camera while looking from side to side. This provides good examples for assessing all 
the features together.  

According to equation 9 and the experimentally obtained values for the weights of 
the scores which are shown in Table 1, a combined score is produced for each image 
in each sequence. The images in each sequence are sorted based on this quality score. 
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Table 1. The values of the scores weight 

Weight ݓଵ ݓଶ ݓଷ ݓସ 
Value 1 0.9 0.6 0.8 

In order to compare the above explained quality scores of the proposed system to a 
human perception of quality, we have annotated the images in each sequence in our 
datasets according to their visual features and the visibility of the face and sorted 
them manually based on our perception of the quality. Table 2 illustrates the results of 
this comparison using these two databases, in which, the correct matching means the 
matching between the human perception and system results for the best images in 
each sequence. While the quality of the images is not too poor and the faces size is 
not too small the order of the selected images by the proposed system is similar to the 
order of the selected images by the human. By the way, even for the poor quality 
images, although it is possible that the images be sorted in different way by the sys-
tem and the human, but in 100% of the cases we can find the best chosen image by 
the human inside the first four chosen images by the system. 

Table 2. Experimental results 

Database Number of 
sequences 

Number of faces 
in sequences 

Face detection 
rate 

Correct  
matching 

DB1 114 7 94.3% 92.1% 
DB2 48 avg. 15 90.5% 87.1% 

Figure 8 shows the results of the quality based ranking by the proposed system and 
the human for an examples from the FRI CVL dataset. In general the human and 
system rankings are in agreement. Slight differences like those seen in the figure 
occur when the images in the database are very similar e.g., like the three in the  
center. 

 

Fig. 8. An example from the FRI CVL database and the quality based rankings 

Figure 9 shows a sequence of images from the Hermes dataset and the results of 
sorting their faces based on the quality both by a human and the proposed system. It is 
obvious from these images that the selected faces by the system match to the selected 
faces by the human for the first five images. 

Figure 10 shows another example from the Hermes dataset. In this sequence the 
size of the head is not changing widely. But since the person turning around his head 
while walking the other features are changing. It can be seen that in this case the most 
important feature is head rotation and the proposed system ranking has an acceptable 
agreement with the human ranking. 
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Fig. 9. Quality based rankings for a sequence from Hermes dataset 

 

Fig. 10. Quality based rankings in the presence of head rotation 

Figure 11 shows another example from the Hermes dataset in which the quality of 
the images are very poor and the walking person has spectacles. In this figure the 
details of our locally assigned scores and also the combined scores are shown.  

As seen in the above figures (8-11), the quality based rankings by the proposed 
system and the human are very close. A few incorrect ordering were observed due to: 
 

 

Fig. 11. A poor quality sequence of images and the details of the locally scoring technique 
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our system cannot detect the exact direction of the face, as well as the facial expres-
sions. When the images in the sequence are very similar and the face image are too 
small then the possibility of miss ranking by the system increases. But in general very 
good results are obtained.  

5   Conclusion 

In this paper we present a face quality assessment system based on four simple fea-
tures including out-of-plan rotation, sharpness, brightness and resolution. These fea-
tures are combined using both a local scoring system and weights. The system is  
evaluated on two databases and the results show a general agreement between the 
system output and quality assessment by a human. For all the sequences of these da-
tabases (100%) the best chosen image by the human is one of the first four chosen 
images by the system and in 89.6% of the cases the first chosen image is the same.  
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Abstract. In this paper we provide a theoretical discussion of the im-
pact of uncertainty in quality measurement on the expected benefits of
including biometric signal quality measures in classification. While an
ideal signal quality measure should be a precise quantification of the
actual signal properties relevant to the classification process, a real qual-
ity measurement may be uncertain. We show how does the degree of
uncertainty in quality measurement impact the gains in class separa-
tion achieved thanks to using quality measures as conditionally relevant
classification feature. We demonstrate that while noisy quality measures
become irrelevant classification features, they do not impair class sepa-
ration beyond the baseline result. We present supporting experimental
results using synthetic data.

Keywords: quality measures, feature relevance, classifier ensembles.

1 Introduction

Degradation of biometric signal quality has been shown to impair the perfor-
mance of biometric classification systems. One of the remedies to this problem is
the use of dedicated metrics that capture the quality of biometric signals. These
metrics are referred to as quality measures (qm). Ideally, a qm should aptly
quantify the direct impact that the extraneous, noisy factors have on the col-
lected signal with respect to the deployed classifier. For instance, the quality of
a noisy speech could be measured by recording the noise that masks the speech
using a separate microphone. However, it is not always possible or practical to
devise a setup capable of capturing the impact of extraneous, quality-degrading
factors directly. In this case, one must infer the quality degradation from the
collected signals themselves. Indeed, this is frequently the case for most biomet-
ric quality measures proposed in the literature [1,2]. Consequently, an indirect
measurement of the quality degradation may carry a measurement error and
the qm may be to some degree uncertain. An important question arises: how
much does the uncertainty in quality measurement impact the value of quality
measures as auxiliary feature from the viewpoint of biometric classification? This
paper answers this question from a theoretical perspective. We adopt the generic
framework of classification with quality measures, Q − stack, proposed in [3,4],
since it has been shown to be a generalization of existing algorithms of classifi-
cation with qm. Consequently, the results presented in this paper are valid for
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any instantiation of classification system with qm accounted for by the model
of Q − stack. Using this framework as a reference, we prove that uncertainty
in quality measurement reduces the conditional relevance of quality measures
as features to the stacked classifier. We demonstrate the practical implications
of this finding using synthetic datasets, where additive and multiplicative noise
models are used. This paper is structured as follows: Section 2 gives a theoretical
discussion of the impact of uncertainty in qm measurement on class separation,
Section 3 gives experimental support for the theoretical findings, and Section 4
concludes the paper.

2 Signal Quality and Quality Measures

In a typical biometric classification system with quality measures one has two
sources of complementary information: the baseline scores x, and the quality
measures qm. The baseline scores x are obtained from biometric classifiers op-
erating on feature sets derived from class-selective raw biometric data, and can
be viewed as a compressed representation of this data. The quality measures qm
convey information about the conditions of data acquisition and the extent of
extraneous noise that shapes the raw data, and therefore are class-independent.
Many algorithms of using quality measures in biometric classification have been
proposed - for single classifier systems they have been often referred to as adap-
tive model/threshold selection [5], while for multiple-classifier systems they have
been frequently called quality-dependent fusion [2,6]. Recently proposed frame-
work of Q−stack [3] is a generalization of these methods, where baseline classifier
scores x and quality measures qm are features to a second-level stacked classifier
which models the dependencies between x and qm. From this perspective, qm
become conditionally relevant classification features, which together with scores
x grant better class separation than that achieved in the domain of x alone.

If a degradation of observed biometric data is important from the classification
perspective, this fact will be reflected in a shift of score x [4]. In real situations
quality measures must be estimated from measurement of the noisy process that
degrades the data. An ideal quality measure would give an error-free estimate of
every instance of noise that affects particular score x. In practice, especially in
situations where measuring the noisy process directly is impossible or very trou-
blesome, quality measures must be derived from the observed data itself - and
indeed this is the most common case in biometrics [1]. Such an indirect quality
measurement is likely to contain certain measurement error, or uncertainty.

A schematic representation of this situation is shown in Figure 1. Consider
stochastic processes A and B generating never-observed, noiseless classification
scores x′. Further, a noise generating process N degrades scores x′ according to
unknown function Φ(x′, n), resulting in the observed noisy scores x distributed
according to pA(x) and pB(x), respectively. Another stochastic process D is the
source of uncertainty in signal quality measurement. The parameters of processes
A, B, N and D as well as the nature of the function Φ(x′, n) are used exclusively
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Fig. 1. Model of uncertain quality measurement of biometric signals

for the purpose of data generation and needs not be known. Let us now denote
the class separation Dx

A,B obtained in the domain of x alone:

Dx
A,B =

∫ ∞

−∞
|pA(x) − pB(x)|dx. (1)

Consider class separation De
A,B in the domain of evidence space e = [x, qm],

defined between class conditional distributions pA(x, qm) and pB(x, qm). This
separation can be expressed as

De
A,B =

∫ ∞

−∞

∫ ∞

−∞
|pA(x, qm) − pB(x, qm)|dxdqm =

=
∫ ∞

−∞

∫ ∞

−∞
|pA(qm|x)pA(x) − pB(qm|x)pB(x)|dxdqm.

(2)

Suppose that qm is measuring the actual signal-distorting condition n with un-
certainty d, reflected in an increasingly noisy measurement of qm. In this situa-
tion

d � n ⇒ pA(qm|x) = pB(qm|x) = p(qm), (3)

where p(qm) is the stochastic process that describes the observed noisy qm =
n + d. Consequently

De
A,B =

∫ ∞

−∞
(
∫ ∞

−∞
p(qm)|pA(x) − pB(x)|dx)dqm =∫ ∞

−∞
p(qm)(

∫ ∞

−∞
|pA(x) − pB(x)|dx)dqm =∫ ∞

−∞
p(qm)Dx

A,Bdqm = Dx
A,B

∫ ∞

−∞
p(qm)dqm = Dx

A,B.

(4)

The result given by Equation 4 is the same if Equations (1,2) are replaced by
another measure of class separation, for instance by divergence.
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The important conclusion is that independently of the marginal distributions
of x and qm or their mutual dependence relationships, increasing the uncertainty
in quality measurement results in the reduced conditional relevance of qm. As
a result, class separation in the space defined by qm and x approaches class
separation observed in the domain of x alone. In Section 3 we demonstrate the
implications of this finding, using synthetic datasets.

3 Experiments

In this section we illustrate the theoretical predictions given in Section 2. Using
synthetic datasets we show the impact of increasing uncertainty in quality mea-
surement on classification accuracy. The choice of synthetic over real biometric
datasets is dictated by the fact that in reality measurement of noise without un-
certainty is impossible. Also, once quality measurement is taken, there is no way
of knowing what this uncertainty actually is. The use of synthetic datasets gives
us the experimental comfort of a full control over all stochastic, data-generating
processes involved in the experiment.

In the experiments reported here, we generate following data: hypothetical
(never observed), noise-free baseline classifier scores x′, noise instances n that
effect scores x′, resulting in noisy baseline scores x = Φ(x′, n), and measurement
noise d, which causes uncertainty in measurement of n. Quality measures qm
are estimated according to qm = n + d. In the absence of noisy measurement,
qm measures n without uncertainty, qm = n. We use two models Φ(x′, n) of
impact of the noise on scores, namely an additive (Φ(x′, n) : x = x′ +n), and an
multiplicative noise model (Φ(x′, n) : x = x′n).

We use instances of four different classifier families as stacked classifiers: a
Linear Discriminant Analysis - based classifier: LDA, a Quadratic Discriminant
Analysis - based classifier: QDA, a Bayes classifier using Gaussian Mixture Model
- based distribution representation: Bayes, and a Support Vector Machines -
based classifier using RBF kernel: SV M . Separate training and testing datasets
are generated. The classifiers are trained using 1000 training data points and
then deployed to classify another 1000 testing data points. The knowledge of the
underlying statistical processes is not used to tune the parameters of the deployed
stacked classifiers. For each noise model type, the magnitude of uncertainty in
quality measurement d was controlled by adjusting the variance σ2

d. Classification
performance of the stacked classifiers as a function of correlation ρ between the
resulting quality measures qm and noisy scores x was recorded. The value of ρ is
a measure of dependence between x and qm which can be evaluated in practical
applications.

3.1 Additive Noise Model

Consider Gaussian processes, which generate observations according to p(x′|A) =
N (µx′,A, σ2

x′,A) and p(x′|B) = N (µx′,B, σ2
x′,B), where µx′,A = −1, σ2

x′,A = 1,
and µx′,B = 1, σ2

x′,B = 1. Bayes error [7] associated with the classification of x′
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into classes A and B can be estimated to be E′
Bayes ≈ 0.1587. Let the noise-

generating process N produce noise instances n according to p(n) = N (µN , σN )
,µN = 0 ,σ2

N = 1. If no noise would be present, observed scores would be x = x′.
Assume that in the presence of noise N the observed scores x are affected by the
noise n according to x = Φ(x′, n) = x′ + n. consequently the class-conditional
distributions of observed scores p(x|A) and p(x|B) are given by convolution of
the probability density functions [8]: p(x|A) = p(x′ + n|A) = p(x′|A) ∗ p(n|A) =
N (µN + µx′,A, σ2

N + σx′,A), and p(x|B) = p(x′ + n|B) = p(x′|B) ∗ p(n|B) =
N (µN + µx′,B, σ2

N + σx′,M ).
Let us now measure the quality measure qm. Theoretically it would be best

to measure n directly, qm ∝ n. This ideal measurement may in practice be not
feasible and the noise measurement may be uncertain. We model this possible
uncertainty by adding white Gaussian noise of controlled variance σ2

d to the
measurement of qm. In this scenario, for σ2

d = 0 ⇒ qm ∝ n, and for σ2
d →

∞ the quality measure qm becomes independent on the actual noise n, and
thus it ceases to be informative from the viewpoint of classification using Q −
stack. Since all involved processes are Gaussian then the dependency between
quality measurements and scores can be measured by computing the correlation
coefficient ρ between qm and x.

In the experiments shown in this section we classified 1000 testing data points,
using classifiers trained on a separately generated set of 1000 training data
points. The data was generated by processes described above. The impact of
ρ on the class-conditional distributions evidence, p(e|A), p(e|B) is shown in
Figure 2.

In Figure 2 quality measures are taken without uncertainty, σ2
d = 0, resulting

in the correlation coefficient between scores x and quality measures qm of ρ ≈
0.58. Decision boundaries ΨLDA, ΨQDA, ΨBayes, ΨSV M of four corresponding
classifiers are shown, as well as the baseline score decision threshold τ(x).
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Fig. 2. Class-conditional evidence distributions p(e|A) and p(e|B) with Q −
stackdecision boundaries for LDA, QDA, SVM and Bayes classifiers. Quality measures
taken at σ2

d = 0.
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Figure 3 demonstrates graphically an example of the impact of the uncertainty
in estimating qm, on classification results in the evidence space e = [x, qm].
Here, the measurement of quality measure is very noisy at σ2

d = 20, resulting
in a low correlation coefficient between x and qm of ρ ≈ 0.13. Consequently
the decision boundaries Ψ between classes A and B tend towards x = τ , the
decision boundary obtained when using only x as classification feature. As the
difference between classification in the evidence spaces of e = [x, qm] and e = [x]
wanes with growing σ2

d, so does the benefit of using quality measure as added
dimension in the evidence vector.
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Fig. 3. Class-conditional evidence distributions p(e|A) and p(e|B) with Q − stack
decision boundaries for LDA, QDA, SVM and Bayes classifiers. Quality measures taken
at σ2

d = 20.

Compare the behavior of the decision boundary ΨSV M in Figures 2(b) and
3(b). The curve shown in Figure 3(b) shows a clear overfitting to the training
data as a result of an increase in dimensionality of e beyond necessity (qm became
an irrelevant feature). This is not the case in Figure 2(b). Such overfitting may
be avoided by clustering quality measures [9], or by simply choosing a classifier
of a smaller parametric complexity.

Figure 4 presents the explicit relationship between the correlation coefficient
ρ between x and qm and the classification error rates in the evidence space using
decision boundaries τ(x), ΨLDA, ΨQDA, ΨBayes and ΨSV M . The variance σ2

d of
the process D that adds uncertainty to the measurement of qm was changed
from σ2

d = 0 to σ2
d = 20. Figure 4 shows the classification errors after 50 in-

dependent experimental runs in terms of mean Half Total Error Rate (HTER).
The error bars show the standard deviation of HTER. The numerical results of
this experiment are gathered in Table 1.

3.2 Multiplicative Noise Model

In this section we show an analogous experiment as reported in Section 3.1, but
here the noise N is multiplicative rather than additive. Now, the parameters of
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Table 1. Selected HTER results from Figure 4(b), 1000 data points, mean values and
standard deviations after 50 repetitions for each value of σ2

d

σ2
d 0 0.4 1 2.6 7 15 20

ρ(x, qm) 0.5785 0.4852 0.4075 0.3012 0.2086 0.1441 0.1272
HTER

µτ(x) 0.241 0.2368 0.2387 0.2426 0.2418 0.2423 0.2411
στ(x) 0.0329 0.0299 0.0286 0.0326 0.0336 0.0286 0.0302
µLDA 0.1603 0.1884 0.2074 0.2249 0.2343 0.2386 0.2389
σLDA 0.029 0.0305 0.0291 0.031 0.0294 0.0312 0.0295
µQDA 0.1596 0.1883 0.208 0.2249 0.2349 0.2388 0.2385
σQDA 0.0252 0.0293 0.0301 0.0287 0.0333 0.0333 0.0271
µBayes 0.1618 0.1948 0.2186 0.2338 0.2398 0.2411 0.2406
σBayes 0.0134 0.016 0.0157 0.0185 0.0168 0.0171 0.0169
µSV M 0.1602 0.1896 0.2091 0.2269 0.2378 0.2444 0.2455
σSV M 0.0128 0.0139 0.0156 0.0163 0.0165 0.0165 0.0182
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Fig. 4. Impact of the correlation ρ between the observed scores x and the observed
quality measures qm, for additive noise

stochastic processes A, B and N are µx′,A = 3, σ2
x′,A = 1, µx′,B = 6, σ2

x′,B = 3,
and µN = 4, σ2

N = 1. Noise instances n are affecting x′ according to the function
x = Φ(x′, n) = n · x′, generating noisy observations (scores) x. Similarly as
in Section 3.1, the uncertainty in measuring qm is controlled by adjusting σ2

d.
Examples of evidence distributions and corresponding decision boundaries are
shown in Figure 5 (for σ2

d = 0), and in Figure 6 (for σ2
d = 20).

Figure 7 presents the explicit relationship of the correlation coefficient ρ be-
tween x and qm and the classification error rates in the evidence space using
decision boundaries τ(x), ΨLDA, ΨQDA, ΨBayes and ΨSV M , for σ2

d changed in
the range of 0 to 20. Obtained classification errors are recorded for respective



26 K. Kryszczuk and A. Drygajlo

0 10 20 30 40 50 60

1

2

3

4

5

6

7

Scores x

Q
ua

lit
y

m
ea

su
re

qm

Classifiers LDA,QDA, ρ=0.465

 

 

data, class A

data, class B

ΨLDA(x, qm)

ΨQDA(x, qm)

τ(x)

(a) Classifiers LDA,QDA

0 10 20 30 40 50 60 70

1

2

3

4

5

6

7

Scores x

Q
ua

lit
y

m
ea

su
re

qm

Bayes classiifer ρ=0.465

 

 

data, class A

data, class B

ΨBayes(x, qm)

ΨSV M(x, qm)

τ(x)

(b) Classifiers Bayes,SV M
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Bayes, SV M stacked classifiers, for σ2
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Fig. 6. Classification in the evidence space e = [x, qm] using (a) LDA, QDA , and (b)
Bayes, SV M stacked classifiers, for σ2
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Table 2. Selected HTER results from Figure 7(b), 1000 data points, mean values and
standard deviations after 50 repetitions for each value of σ2

d

σ2
d 0.000 0.400 1.000 2.600 7.000 15.000 20.000

ρ(x, qm) 0.000 0.007 0.012 0.014 0.019 0.022 0.022
HTER

µτ(x) 0.201 0.202 0.202 0.203 0.202 0.205 0.203
στ(x) 0.035 0.032 0.037 0.035 0.033 0.030 0.037
µLDA 0.141 0.160 0.177 0.191 0.197 0.203 0.202
σLDA 0.035 0.035 0.035 0.031 0.033 0.033 0.036
µQDA 0.150 0.173 0.186 0.201 0.199 0.203 0.203
σQDA 0.080 0.086 0.085 0.087 0.069 0.060 0.061
µBayes 0.140 0.163 0.177 0.194 0.197 0.203 0.203
σBayes 0.014 0.015 0.017 0.017 0.015 0.016 0.019
µSV M 0.144 0.170 0.186 0.204 0.215 0.225 0.226
σSV M 0.015 0.015 0.017 0.017 0.018 0.017 0.017

classifiers after 50 independent experimental runs in terms of mean Half To-
tal Error Rate (HTER). The error bars show the standard deviation of HTER.
Numerical data from this experiment are gathered in Table 2.

4 Conclusions

We proposed a model of uncertain quality measurements of biometric signals,
and we proved that the use of uncertain qm does not negatively impact class
separation in respect to the baseline systems which do not use qm. We have
instantiated this theoretical result with synthetic datasets, using additive and
multiplicative models of noise. The conducted experiments showed that as the
uncertainty of qm increases, the classification performance approaches that of a
system that uses no quality measures. This result is explained by the fact that
uncertain qm loose their conditional relevance to the classification process.

Another important conclusion from the presented study concerns the problem
of model selection for classification with qm. As the presented results show, qm
collected with a high certainty allow for successful deployment of stacked clas-
sifiers of less constrained complexity. As the uncertainty of qm grows, stacked
classifiers of restricted complexity proved to be less prone to overtraining than
those with more degrees of freedom. This overtraining result can be clearly seen
from the error bars in Figures 4 and 7, but also from the shapes of decision
boundaries in Figures 2, 3, 5 and 6. This result shows that the sensitivity of
the stacked classifier to overtraining depends not only on problem dimension-
ality but on the strength of dependencies between variables in the evidence
vector.
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Abstract. This paper analyzes two recently released image quality specifica-
tions for single-finger scanners and proposes three new specifications targeted 
to different types of applications. A comparison of the potential effects on fin-
gerprint recognition accuracy of the various specifications is carried out using 
an approach based on the definition of “operational quality”. The experimental 
results show that the three new image quality specifications proposed in this 
work have an accuracy/cost tradeoff better than the existing ones. 

1   Introduction 

Fingerprint recognition is one of the most reliable and effective biometric technolo-
gies and is being adopted as the main identity verification method in several large 
scale applications. Some countries already store fingerprint data in electronic identity 
documents and many others plan to do so in the near future. Examples of recent large-
scale government projects based on fingerprint recognition include: the US-VISIT 
[12] and PIV [10] programs in the United States, the Biometric Passport in Europe 
[2], the Malaysian government multipurpose card [7] and the Singapore biometric 
passport [11] in Asia. 

In large-scale biometric applications, the choice of the acquisition devices is one of 
the most critical issues since many, often conflicting, requirements have to be taken 
into account, such as the need for high-quality images, interoperability requisites and 
budget.  

Typically, in large-scale projects a set of specifications is given for the input de-
vices, in order to guarantee a minimum quality level for some relevant parameters. In 
the FBI Image Quality Specifications (IQS) for fingerprint scanners [3] [4], the “qual-
ity” is defined as “fidelity” in reproducing the original fingerprint pattern, and it is 
quantified by parameters traditionally used for vision, acquisition and printing sys-
tems: geometric accuracy, gray level dynamic range, Signal-to-Noise Ratio (SNR), 
Spatial Frequency Response (SFR), etc. This definition of quality is clearly appropri-
ate to IAFIS and other applications where the images may be examined by forensic 
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experts. In fact human experts’ comparison techniques heavily rely on very fine de-
tails such as pores, incipient ridges, etc., for which the fidelity to the original signal is 
fundamental.  

On the other hand, the situation is different in totally-automated biometric systems, 
where: i) the images are stored but used only for automated comparisons, or ii) only 
fingerprint templates are stored. As discussed in a recent work [1], in these cases it 
may be more appropriate to define the fingerprint scanner quality as the ability of a 
fingerprint scanner to acquire images that maximize the accuracy of automated recog-
nition algorithms (operational quality). A first advantage of the operational quality is 
that it allows to estimate the loss of performance of a scanner compliant to a given 
IQS with respect to an “ideal scanner”. In [1], the impact on the recognition accuracy 
of each quality parameter has been separately assessed, to understand which are the 
most critical requirements. This work evaluates the simultaneous effect of all the 
requirements referring to two recently released IQS for single-finger scanners (PIV 
and PassDEÜV) and proposes three new sets of IQS (CNIPA-A, CNIPA-B and 
CNIPA-C) targeted to different applications where single finger scanners are required. 
The rest of this paper is organized as follows: section 2 reviews and compares the 
above five fingerprint scanner IQS and section 3 studies their potential impact on 
recognition accuracy; finally section 4 draws some conclusions. 

2   IQS for Single Finger Scanners 

This section presents some IQS for single-finger scanners to be used in different  
applications. 

• PIV: established by the US Federal Bureau of Investigation (FBI) for the US Per-
sonal Identification Verification program, whose aim is to improve the identifica-
tion and authentication for access to U.S. Federal facilities and information  
systems [4] [9]; 

• PassDEÜV: established by the German Federal Office for Information Technology 
Security (BSI) for the capture and quality assurance of fingerprints by the passport 
authorities and the transmission of passport application data to the passport manu-
facturers [13]; the PassDEÜV requirements are identical to the FBI AFIS require-
ments (see [3]) except for the acquisition area, which can be smaller; 

• CNIPA-A/B/C: these three new set of specifications are here proposed for the first 
time; they are currently being evaluated by CNIPA (the Italian National Center for 
ICT in the Public Administration) for inclusion within the guidelines for the Italian 
public administrations involved in biometric projects. In particular: 

− CNIPA-A is conceived for: i) enrolment in large-scale applications where de-
vice interoperability is crucial (e.g. passports, national identity card); ii) identity 
verification in large-scale applications where the enrolment has been performed 
with an IAFIS IQS or CNIPA-A complaint scanners (e.g. passport or visa  
verification); 
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− CNIPA-B is conceived for: i) enrolment and verification in medium-scale pro-
jects (e.g. intra-organization projects); ii) identity verification in large-scale ap-
plications where the enrolment has been performed with CNIPA-A scanners 
(e.g. national identity card verification); 

− CNIPA-C is conceived for enrolment and verification in small-scale applica-
tions, where typically users are authenticated on the same device (e.g. logical 
and physical security in small organizations). 

The five IQS are mainly based on the following quality parameters: 

• Acquisition area: capture area of the scanner (w×h). 
• Native resolution: the scanner’s true internal resolution (RN) in pixels per inch 

(ppi). 
• Output resolution: the resolution of the scanner’s final output fingerprint image in 

ppi. 
• Gray-level quantization: number of gray-levels in the final output fingerprint  

image. 
• Geometric accuracy: geometric fidelity of the scanner, measured as the absolute 

value of the difference D, between the actual distance X between two points on a 
target and the distance Y between those same two points as measured on the output 
scanned image of that target; PIV and PassDEÜV evaluate this parameters in two 
different modalities: Across-bar (DAC) and Along-bar (DAL), see [8] [9] for more 

details, while CNIPA requires to measure the Relative difference (
X

D
D l =Re ). 

• Input/output linearity: the degree of linearity is measured as the maximum devia-
tion DLin of the output gray levels from a linear least squares regression line fitted 
between input signal and output gray levels scanning an appropriate target (see[8] 
[9]). 

• Spatial frequency response: PIV and PassDEÜV evaluate the SFR using the device 
Modulation Transfer Function (MTF) measured at each nominal test frequency f, 
using a continuous-tone sine wave target; CNIPA specifications assess this factor 
by dividing the acquisition area in 0.25”×0.25” regions and measuring, for each re-
gion, the Top Sharpening Index (TSI), see [5] [6] for more details. 

• Gray level uniformity: defined as the gray-level differences found in the image 
obtained by scanning a uniform dark (or light) gray target. This parameter is evalu-
ated by dividing the acquisition area in 0.25”×0.25” regions and measuring the dif-
ferences between: i) the average gray-levels of adjacent rows/columns 

( )light
RC

dark
RC DD , , ii) the average gray-level of any region and the gray-level of each 

of its pixels ( )light
PP

dark
PP DD , ; iii) the average gray-levels of any two regions 

( )light
SA

dark
SA DD , . 

• Signal-to-noise ratio: the signal is defined as the difference between the average 
output gray-levels obtained from acquisition of a uniform light gray and a uniform 
dark gray target, measuring the average values over independent 0.25”×0.25” ar-
eas; the noise is defined as the standard deviation of the gray-levels in those areas. 
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• Fingerprint gray range: given a set of scanned fingerprint images, the dynamic 
range (DR) of each image is defined as the total number of gray levels that are pre-
sent in the image. 

 

Table 1 reports, for each of the above quality parameters, the requirements that a 
scanner has to meet in order to be compliant with the five specifications. 

Table 1. A comparison of PIV, PassDEÜV and CNIPA-A/B/C requirements for the main 
quality parameters 

Requirement 

CNIPA Parameter 
PIV IQS [4] [9] PassDEÜV IQS [13] 

IQS A IQS B IQS C 

Acquisition area 
w ≥ 12.8mm 
h ≥ 16.5mm 

w ≥ 16.0mm 
h ≥ 20.0mm 

w ≥ 25.4mm 
h ≥ 25.4mm

w ≥ 15.0mm 
h ≥ 20.0mm 

w ≥ 12.8mm 
h ≥ 16.5mm 

Native resolution RN ≥ 500ppi 
Output resolution RN ± 2% RN ± 1% RN ± 1% RN ± 1.5% RN ± 2% 
Gray-level quanti-

zation 
256 gray-levels (8 bpp) 

Geometric  
accuracy 

In 99% of the tests: 
DAC ≤max{0.0013”,0.018·X}

DAL ≤ 0.027” 

In 99% of the tests: 
DAC ≤max{0.0007”,0.01·X}

DAL ≤ 0.016” 

In all the 
tests: 

DRel≤1.5% 

In all the 
tests: 

DRel≤2.0% 

In all the 
tests: 

DRel≤2.5% 

Input/output 
linearity 

No requirements DLin≤ 7.65 No requirements 

Spatial frequency 
response 

MTFmin(f) ≤ MTF(f) ≤ 1.12 
see [1] for PIV MTFmin(f) 

MTFmin(f) ≤ MTF(f) ≤ 1.05 
see [1] MTFmin(f) values 

For each 
region: 

TSI≥0.20 

For each 
region: 

TSI≥0.15 

For each 
region: 

TSI≥0.12 

Gray level uniform-
ity 

In 99% of the cases: 
dark
RCD  ≤ 1.5; 

light
RCD  ≤ 3 

For 99% of the pixels: 
dark
PPD  ≤ 8; 

light
PPD  ≤ 22 

For every two small areas: 
dark
SAD  ≤ 3; 

light
SAD  ≤ 12 

In 99% of the cases: 
dark
RCD  ≤ 1 ; 

light
RCD  ≤ 2 

For 99.9% of the pixels: 
dark
PPD  ≤ 8; 

light
PPD  ≤ 22 

For every two small areas: 
dark
SAD  ≤ 3; 

light
SAD  ≤ 12 

No requirements 

Signal-to-noise1 SNR ≥ 70.6 SNR ≥ 125 SNR≥70.6 SNR≥49.4 SNR ≥30.9 

Fingerprint  
gray range 

For 80% of the images: 
DR ≥ 150 

DR ≥ 200 for 80% images; 
DR ≥ 128 for 99% images 

For 10% of 
the images: 
DR ≥ 150 

For 10% of 
the images: 
DR ≥ 140 

For 10% of 
the images: 
DR ≥ 130 

3   Impact of the IQS on the Recognition Accuracy 

In order to evaluate the impact on fingerprint recognition accuracy of the IQS de-
scribed in section 2, a systematic experimentation has been carried out. Following the 
testing methodology introduced in [1] and using the same test database, fingerprint 
images acquired by hypothetical scanners compliant with each IQS have been simu-
lated. To this purpose, the transformations described in [1] have been sequentially 
applied to the original fingerprint images according to the worst-case scenario hy-
pothesized in Table 2. 

                                                           
1 Actually in PIV IQS and CNIPA this requirement is given by setting the maximum noise 

standard deviation to 3.5. To make it comparable with the corresponding PassDEÜV IQS, 
here we provide this value as a SNR under the hypothesis of a 247 gray-level range (see [3]): 
SNR = 247/3.5 = 70.6.  
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The outcome of this analysis is an estimation of the loss of accuracy that scanners 
compliant with each specification may cause with respect to the performance that 
would be obtained using “ideal” scanners (i.e. devices with negligible perturbations). 
The loss of accuracy is quantified by the relative EER difference between the two 
cases, expressed as a percentage value (see [1]); for instance, if the relative EER dif-
ference is 100%, it means that the EER obtained by the simulated scanners is twice 
the EER obtained by the ideal scanners. All the experiments have been carried out 
using ten state-of-the-art fingerprint recognition algorithms. Fig. 1 reports a box-plot 
for each specification: each box-plot shows descriptive statistics about the relative 
EER difference of the ten algorithms. 

Table 2. The table reports, for each quality parameter, the characteristic of the scanners hy-
pothesized for enrolment and verification. In fact, in a typical large-scale application, the scan-
ner used during enrolment may be different from those used during verification. Note that 
“different” does not necessarily imply a distinct model/vendor: in fact, two scanners of the 
same model may produce different output images. For instance if a certain scanner model is 
compliant to a 500ppi±1% output resolution specification, one of such devices may work at 
505ppi and another at 495ppi.  

Parameter Enrolment scanner Verification scanner 

Acquisition area The minimum-allowed The minimum-allowed 

Output resolution 
The minimum-allowed 

(ResOR-RRes%) 
The maximum-allowed  

(ResOR+RRes%) 
Geometric accu-

racy 
Negligible The maximum-allowed 

Spatial frequency 
response 

The minimum-allowed The minimum-allowed 

Signal-to-noise 
ratio 

The minimum-allowed The minimum-allowed 

Fingerprint gray 
range 

The minimum-allowed The minimum-allowed 

In order to better understand the results summarized in Fig. 1, it is useful to com-
pare the five IQS as shown in Table 3, where the “strictness” of the various quality 
parameters with respect to the FBI IAFIS IQS [3] is highlighted. The most “tolerant” 
specification is CNIPA-C, which has the least demanding requirements for all the 
parameters: as it was reasonable to expect, this specification can cause the largest 
performance drop (182% on the average). Less tolerant but still not very strict are 
PIV and CNIPA-B (both with three “L” and three “M” requirements); however the 
loss of performance that can be caused by them is definitely different: on the average 
156% and 44%, respectively. This means that the impact of the various quality pa-
rameters on the recognition accuracy is not uniform: the first three parameters in 
Table 3 are more critical than the last three ones. The two most demanding specifica-
tions (PassDEÜV and CNIPA-A) cause definitely smaller performance drops (on the 
average 20% and 18%, respectively); Table 3 shows that CNIPA-A has the most 
strict requirement for the acquisition area, while PassDEÜV for spatial frequency  
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Fig. 1. A box-plot for each specification. Each box-plot graphically shows descriptive statistics 
of a set of data: the top and bottom of the vertical line denotes the largest and smallest observa-
tion, respectively; the rectangle contains 50% of the observations (from the first to the third 
quartile) and highlights the median (second quartile); finally the mean of all the observations is 
marked with a black circle. 

response, signal-to-noise ratio and fingerprint gray range. CNIPA-A IQS produces 
the smallest loss of performance, mainly due to the larger acquisition area that is the 
most critical parameter, as proved in [1]. 

Table 3. For each of the quality parameters a label in {“L: Low”, “M: Medium”, “H: High”} is 
used to characterize the level of “strictness” of the requirement in the specifications. “H” is 
used when the constraint is as “strict” as in the FBI IAFIS-IQS [3]; “M” and “L” are used when 
the specification is moderately or significantly relaxed, respectively, with respect to the corre-
sponding FBI IAFIS-IQS. 

Level of “strictness” of the requirements Parameter 
PIV IQS PassDEÜV CNIPA-A CNIPA-B CNIPA-C 

Acquisition area L M H M L 
Output resolution accuracy L H H M L 

Geometric accuracy2 L H H M L 
Spatial frequency response3 M H M L L 

Signal-to-noise ratio M H M L L 
Fingerprint gray range M H M L L 

                                                           
2 CNIPA-A/B/C IQS set requirements on a slightly different measurement of geometric accu-

racy; however it can shown that PIV IQS is comparable to CNIPA-C requirement and Pass-
DEÜV requirement (the same of the IAFIS IQS) is comparable to CNIPA-A requirement  
(see [1]). 

3 Although CNIPA-A/B/C IQS on spatial frequency response are based on a different measure 
(see [5] [6]), according to our internal tests, PIV-IQS requirement is close to CNIPA-A. 
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4   Conclusions 

This paper analyzed two recently released IQS for single-finger scanners (PIV and 
PassDEÜV) and proposed three new IQS (CNIPA-A/B/C) targeted to different appli-
cations. A comparison of the potential effects on recognition accuracy of the various 
specifications has been carried out using the operational quality approach introduced 
in [1]. 

The three new IQS have been designed according to outcomes of [1], and trying to 
define IQS with an optimal accuracy/cost tradeoff. 

Although the results of this analysis partially depend on the specific scanner used 
for collecting the test database (see [1]), we believe that similar results would be ob-
tained starting from images acquired by other scanners. According to the experimen-
tal results, we can conclude that the three proposed specifications are well suited for 
the applications they are targeted to. In particular: 

• CNIPA-A specification is able to guarantee the best performance among the five 
IQS reviewed, thanks to the higher acquisition area, which proved to be the most 
important parameter; 

• CNIPA-B specification is able to guarantee an accuracy that is clearly better than 
PIV and not too far from PassDEÜV; on the other hand, the cost of a device com-
pliant to CNIPA-B would be definitely lower than that of one compliant to Pass-
DEÜV, thanks to the less demanding requirements on five parameters; 

• CNIPA-C specification can guarantee an accuracy similar to PIV but, also in this 
case, the cost of a device compliant to CNIPA-C would be definitely lower than 
the cost of PIV-compliant devices. 
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Abstract. Gabor filters have demonstrated their effectiveness in auto-
matic face recognition. However, one drawback of Gabor-based face rep-
resentations is the huge amount of data that must be stored. One way to
reduce space is to quantize Gabor coefficients using an accurate statisti-
cal model which should reflect the behavior of the data. Statistical im-
age analysis has revealed one interesting property: the non-Gaussianity of
marginal statistics when observed in a transformed domain (like Discrete
Cosine Transform, wavelet decomposition, etc.). Two models that have
been used to characterize this non-normal behavior are the Generalized
Gaussian (GG) and the Bessel K Form densities. This paper provides an
empirical comparison of both statistical models in the specific scenario
of modeling Gabor coefficients extracted from face images. Moreover, an
application for biometric template reduction is presented: based on the
underlying statistics, compression is first achieved via Lloyd-Max algo-
rithm. Afterwards, only the best nodes of the grid are preserved using
a simple feature selection strategy. Templates are reduced to less than
2 Kbytes with drastical improvements in performance, as demonstrated
on the XM2VTS database.

1 Introduction

Gabor filters are biologically motivated convolution kernels that have been wide-
lyused in face recognition during the last decade (see [1] for a recent survey).
Basically, Gabor-based approaches fall into one of the following categories: a)
Extraction of Gabor responses from a set of key points in face images and b)
Convolution of the whole image with a set of Gabor filters. As highlighted in [1],
one of the main drawbacks of these approaches (specially the ones included in
category b) is the huge amount of memory that is needed to store a Gabor-based
representation of the image. Even in the case of a), considering 100 points, 40
Gabor filters and float (4 bytes) representation, the template size reaches 32
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B. Schouten et al. (Eds.): BIOID 2008, LNCS 5372, pp. 37–46, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Kbytes which is considerably bigger than those employed by commercial sys-
tems. For instance, Cognitec’s [2] templates occupy 1800 bytes each one, and
L-1 Identity Solutions’ [3] template size ranges from 648 bytes to 7 Kbytes. One
way to reduce the room needed for storing a Gabor-based face representation is
to quantize Gabor coefficients using an accurate statistical model.

Statistical analysis of images has revealed, among other characteristics, one
interesting property: the non-Gaussianity of image statistics when observed in a
transformed domain, e.g. wavelet decomposition. This means that the coefficients
obtained through such transformations are quite non-Gaussian being character-
ized by high kurtosis, sharp central cusps and heavy tails. Among others, the
works in [4,5,6,7] have observed this behavior, taking advantage of such a prop-
erty for different applications. Different statistical priors have been proposed
to model marginal distributions of coefficients, such as Generalized Gaussians
(GGs, pioneered by the work of [4]), Bessel K forms (BKFs) [8] and alpha-stable
distributions [9]. In [10], the authors concluded that Bessel K forms were more
accurate than the classical Generalized Gaussian densities for modeling marginal
distributions. The first goal of this paper is to provide an empirical evaluation of
these two priors in the specific context of (Gabor-based) face recognition. Once
demonstrated that GGs perform better in this scenario, we took advantage of the
undelying statistics to compress data using coefficient quantization by means of
Lloyd-Max algorithm. At this point, and in order to further reduce the template
size, we decided to apply feature selection by means of the Best Individual Fea-
ture (BIF) algorithm [11,12,13]. This way, the template is compressed because
of the lower number of features that are kept and, at the same time, system
performance is drastically increased.

The paper is organized as follows: Section 2 presents the system used to ex-
tract Gabor features from face images. Section 3 introduces the two statistical
densities, Generalized Gaussians and Bessel K Forms, involved in the evalua-
tion, as well as the obtained results. The application for biometric template size
reduction based on feature selection and coefficient quantization is presented in
Section 4. Finally, conclusions are outlined in Section 5.

2 Gabor Feature Extraction

A set of 40 Gabor filters {ψm}m=1,2,...,40 with the same configuration as in [14]
(5 spatial frequencies and 8 orientations), is used to extract textural information
from face images. The baseline face recognition system that we have used in
this paper relies upon extraction of Gabor responses at each of the nodes from
a nx × ny (10 × 13) rectangular grid (Figure 1). All faces were geometrically
normalized -so that eyes and mouth are in fixed positions-, cropped to a standard
size of 150x116 pixels and photometrically corrected by means of histogram
equalization and local mean removal. The region surrounding each grid-node in
the image is encoded by the convolution of the image patch with these filters,
and the set of responses is called a jet, J . Therefore, a jet is a vector with 40
complex coefficients, and it provides information about a specific region of the
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Fig. 1. Rectangular grid over the preprocessed (geometrically and photometrically nor-
malized) face image. At each node, a Gabor jet with 40 coefficients is computed and
stored.

image. At node pi = [xi, yi]
T and for each Gabor filter ψm, m = 1, 2 . . . , 40, we

get the following Gabor coefficient:

gm(pi) =
∑∑

I(x, y)ψm (xi − x, yi − y) (1)

where I(x, y) represents the photometrically normalized image patch. Hence, the
complete jet extracted at pi is given by J (pi) = [g1(pi), g2(pi), . . . , g40(pi)]. For
a given a face with n = nx ×ny grid-nodes {p1, p2, . . . , pn}, we get n Gabor jets
{J (p1),J (p2), . . . ,J (pn)}.

3 Modeling Marginal Distributions of Gabor Coefficients

Generalized Gaussians have been already used in [7] to model Gabor coefficients
extracted from face images, with good results. On the other hand, [10] compared
BKF against GG, concluding that the BKF density fits the data at least as
well as the Generalized Gaussian, and outperforms GGs in capturing the heavy
tails of the data histogram. The goal of this section is to introduce Generalized
Gaussians and Bessel K Forms, and compare the fitting provided by both models
in the specific scenario we are considering.

3.1 Univariate Generalized Gaussians

Pioneered by the work of [4], Generalized Gaussians have been successfully used
to model marginal distributions of coefficients produced by various types of
transforms [5,6,7,15]. The pdf of a GG is given by the following expression:

Pµ,β,σ =
1

Z (β) σA (β)
exp

(
−
∣∣∣∣ x − µ

σA (β)

∣∣∣∣β
)

(2)
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where β is the so-called shape parameter, µ represents the mean of the distribu-
tion, and σ is the scale parameter. In the following we will consider zero mean
data, i.e. µ = 0. Z (β) and A (β) in Eq. (2) are given by:

Z (β) =
2
β

Γ

(
1
β

)
(3)

A (β) =

√
Γ (1/β)
Γ (3/β)

(4)

where Γ (.) represents the Gamma function. It should be noted that the Lapla-
cian, Gaussian and Uniform distributions are just special cases of this generalized
pdf, given by β = 1, β = 2 and β → ∞ respectively.

3.2 Bessel K Form Densities

Bessel K Form (BKF) densities [8] have recently emerged as a valid alternative for
coefficient modeling. As well as the GG, the BKF distribution is characterized by
two parameters (p and c) with analogous meaning to that of β and σ respectively.
The BKF density is given by:

BKF (x; p, c) =
2

Z(p, c)
|x|(p−0.5)

K(p−0.5)

(√
2
c
|x|
)

(5)

where Kν is the modified Bessel function of order ν defined in [16], and Z is the
normalizing constant given by:

Z(p, c) =
√

πΓ (p)(2c)(0.5p+0.25) (6)

The BKF density is based on a physical model for image formation (the so-called
transported generator model), and its parameters have been usually estimated
using moments [8], and k statistics unbiased cumulants estimators [10].

3.3 Comparing GGs and BKFs for Modeling Gabor Coefficients of
Face Images

As stated above, [10] claims that BKFs outperform GGs. However, no descrip-
tion of the method used to estimate the Generalized Gaussian parameters was
included (moments, Maximum Likelihood, etc.). This Section introduces the ex-
perimental framework used for evaluating both GGs and BKFs:

From a set of face images {F1,F2, . . . ,FT }, we extract Gabor jets using the
rectangular grid introduced in Section 2. Regardless of the node from which they
have been computed, the coefficients corresponding to a given Gabor filter ψm

(real and imaginary parts separately) are stored together forming two sets of
coefficients Sreal

m and Simag
m (Only experiments with the real part are provided.

Analogous results were observed for the imaginary part). Now, our goal is to
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assess which statistical model, GGs or BKFs, provides a more accurate fit. To
this aim, we performed the following experiment:

– For each pair of orientation and scale, i.e. for each filter ψm, both BKF and
GG parameters were estimated on 10 different random subsets sampled from
Sreal

m .
– For each coefficient and set, the Kullback-Leibler (KL) distance [17] was

measured between the observed histogram and the two estimated densities.
– The average KL for the m−th coefficient, as well as the associated standard

deviation, were stored.

The k statistics unbiased cumulants estimators [10] were used to determine
the parameters of the BKF distributions, while Maximum Likelihood (ML) [6]
was employed to estimate GG parameters. Examples of observed histograms
on a log scale along with the two fitted densities are shown in Figure 2 for
coefficients 1, 9, 17, 25 and 33 (i.e. the coefficients with vertical orientation from
each frequency subband).

From these plots, it seems that both densities are equivalent in the last 3
(lowest) frequency subbands. However, Generalized Gaussians are quite more
accurate than BKF in the first two (highest) frequency subbands (specially
when fitting the central cusp). In agreement with [10], Bessel K Forms seem
slightly better in capturing the heavy tails of the observed histogram for the 1st

frequency subband.
Figure 3 shows, for each Gabor coefficient, the mean KL distance (left) as well

as the associated standard deviation (right) between the observed histograms
and the two estimated densities. It is clear that Generalized Gaussians provide
a much better modeling than BKFs in the two first scales (highest frequency
scales-coefficients from 1 to 16), a slightly better behavior in the third scale
(coefficients from 17 to 24) and equal performance in the remaining two scales.

As stated above, BKF parameters were estimated using a robust extension
of the moments method, while GG parameters were determined using ML. In
[6] it is also described a way to estimate Generalized Gaussian parameters using
moments. In order to compare BKFs and GGs with similar parameter estimation
procedures, the experiment described above was repeated using GGs fitted via
the moments-based method. Results are shown in Figure 4, demonstrating that
even with comparable estimation procedures, GGs do outperform BKFs.

4 Biometric Template Reduction

We have demonstrated that, in the case of Gabor coefficients extracted from face
images, the Generalized Gaussians model provides a better fit than the one based
on Bessel K Forms. Using the GG model, coefficients can be compressed by means
of Lloyd-Max quantization algorithm (the one with minimum mean squared error
(MSE) for a given number NL of representative levels) [18,19]. Hence, instead
of storing the original coefficient, we only need to keep two indices (one for
the real part and another for the imaginary part) per coefficient (2 × 40 × n
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Fig. 2. Examples of observed histograms (on a log scale) along with the BKF and GG
fitted densities
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Fig. 3. Left: Mean KL distance between observed histograms and the two estimated
densities (GG and BKF). Right: Associated standard deviation.
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Fig. 4. Left: Mean KL distance between observed histograms and the two estimated
densities (GG fitted via a moments-based method and BKF). Right: Associated stan-
dard deviation.

indices per face). Using NL quantization levels, we can represent a coefficient
with 2 × �log2 (NL)� bits. In our case, a face is therefore represented by

40 × n × 2 × �log2 (NL)�
8

= 10n× �log2 (NL)� = 1300× �log2 (NL)� bytes (7)

If Nf faces are to be stored, then

1300× Nf × �log2 (NL)� + 40 × 4(bytes) × NL(centroids) bytes (8)

are needed. The second term in the previous expression represents the storage
required for the NL centroids in each coefficient band (given that both real and
imaginary parts have very similar GG parameters, only NL centroids have been
used to quantize each band). Authentication experiments on configuration I [20]
of the XM2VTS database [21] demonstrate that high compression rates can be
achieved without loss of performance (see Table 1).

This table presents the False Acceptance Rate (FAR), the False Rejection Rate
(FRR) and the Total Error Rate (TER=FAR+FRR) using both original and
compressed (with NL quantization levels) data. It seems clear that only NL = 8
levels are enough, since no degradation is observed. However, even in this case, 6
bits per coefficient are needed (3 bits for the real part and 3 bits for the imaginary
part), and 130×6×40

8 = 3900 bytes are required to store a template. At this point,
one can think of, at least, two other possibilities to reduce the amount of data
to be stored: i) reduce the number of Gabor jets extracted from the rectangular
grid and ii) reduce the number of coefficients that form a jet. Regarding the
former, one straightforward way to achieve the goal is to reduce the size of
the grid, but this can lead to a decrease in performance. A wiser strategy may
include feature selection, i.e. preserve those jets that are good at discriminating
between clients and impostors, and discard the remaining ones. The benefits of
such methodology are not limited to reducing storage but also increasing system
performance. One technique that has demonstrated good performance despite
its simplicity is the Best Individual Feature (BIF) selection approach [11,12,13].
In [13], different tools for Gabor jet similarity fusion were evaluated, concluding
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Table 1. Face Verification on the XM2VTS database. False Acceptance Rate (FAR),
False Rejection Rate (FRR) and Total Error Rate (TER) over the test set using both
raw and compressed data and the whole set of 130 jets. Moreover, approximate storage
saving is provided for each quantization level.

Test Set
Storage Saving FAR(%) FRR(%) TER(%)

NL = 2 ≈97% 12.15 18.25 30.40

NL = 4 ≈94% 4.19 8.00 12.19

NL = 8 ≈91% 3.49 5.50 8.99

NL = 16 ≈87% 3.85 5.50 9.35

NL = 32 ≈84% 3.71 5.00 8.71

NL = 64 ≈81% 3.53 5.50 9.03

NL = 128 ≈78% 3.57 5.00 8.57

NL = 256 ≈75% 3.63 4.75 8.38

NL = 512 ≈72% 3.66 4.75 8.41

Raw data 0% 3.79 5.25 9.04

Table 2. Face Verification on the XM2VTS database. Total Error Rate (TER) over
the test set for different quantization levels and number of jets selected by BIF (NJets).

NL raw
NJets 2 4 8 16 32 64 128 256 512 data

1 64.2 42.8 27.2 30.9 23.1 22.3 21.2 21.3 20.8 18.7
10 37.5 14.1 5.9 5.8 6.5 5.1 5.8 5.4 5.3 4.8

20 31.4 10.1 5.7 5.6 5.6 4.7 4.8 5.0 4.9 5.3
30 27.9 10.5 6.6 5.5 5.3 5.4 6.1 5.1 5.3 5.3
40 25.4 9.1 5.6 5.6 5.7 6.1 5.6 5.4 5.8 5.3
50 25.4 8.3 6.1 5.8 6.0 5.4 4.9 5.7 5.3 5.4
60 23.9 8.9 6.5 5.8 6.0 5.6 5.6 5.5 5.9 5.8

Table 3. Template syze (Kbytes) for different quantization levels and number of jets
selected by BIF (NJets)

NL raw
NJets 2 4 8 16 32 64 128 256 512 data

1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.32
10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 3.2

20 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 6.4
30 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 9.6
40 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 12.8
50 0.5 1 1.5 2 2.5 3 3.5 4 4.5 16
60 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 19.2

that, in the specific scenario of face verification with little amount of data for
building client templates, simple approaches such as BIF performed even better
than more complex techniques like SVMs, Neural Networks, etc. (see [13] for
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details). The idea behind BIF (as its name reads) is to select the best individual
features according to some criterion (e.g. individual classification accuracy). We
fixed the number of features to be selected by BIF to 1, 10, 20, . . . and performed
authentication experiments on configuration I of the Lausanne protocol [20]. The
“best” jets were selected employing both training and evaluation data, while
system performance was measured on the disjoint test set (see [20] for details
on data partition and protocol). Table 2 shows the TER over the test set for
different quantization levels and number of jets selected by BIF, highlighting
those configurations that achieve less than 5% of TER. By employing the best
20 jets with coefficients quantized using NL = 64 levels, the error rate drops to
4.7% and, at the same time, template size is reduced to 1.2 Kbytes (see Table
3 for the corresponding template sizes). Equal performance (4.8%) is achieved
with original data and 10 jets but at the cost of a considerably bigger (3.2
Kbytes) template size. Compared to the original system with 130 jets and original
coefficients, the use of 20 jets and 64 levels implies an increase in performance
of 48.09% while approximately saving 97% of space.

5 Conclusions

This paper has presented an empirical comparison of two statistical priors for
modeling Gabor coefficients extracted from face images. The main conclusion
is that Generalized Gaussians provide a more accurate fitting than Bessel K
Forms in this specific scenario. Taking advantage of the underlying statistics,
Gabor coefficients were compressed using Lloyd-Max quantization algorithm,
and further storage reduction was achieved by means of Best Individual Feature
selection. Finally, both biometric template reduction and drastic increase in
performance compared to the original system have been obtained.
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techniques for still images: Detector performance analysis and a new structure.
IEEE Transactions on Image Processing 9(1), 55–68 (2000)

6. Do, M.N., Vetterli, M.: Wavelet-Based Texture Retrieval Using Generalized Gaus-
sian Density and Kullback-Leibler Distance. IEEE Transactions on Image Process-
ing 11(2), 146–158 (2002)
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Abstract. A new 3D face database that includes a rich set of expressions, sys-
tematic variation of poses and different types of occlusions is presented in this 
paper. This database is unique from three aspects: i) the facial expressions are 
composed of judiciously selected subset of Action Units as well as the six basic 
emotions, and many actors/actresses are incorporated to obtain more realistic 
expression data; ii) a rich set of head pose variations are available; and iii) dif-
ferent types of face occlusions are included. Hence, this new database can be a 
very valuable resource for development and evaluation of algorithms on face 
recognition under adverse conditions and facial expression analysis as well as 
for facial expression synthesis. 

1   Introduction 

In recent years face recognizers using 3D facial data have gained popularity due to 
their relative advantages over 2D schemes, notably lighting and viewpoint independ-
ence. This trend has also been enabled by the wider availability of 3D range scanners. 
The 3D face processing can be envisioned in two roles, either as a single modality 
biometric approach in lieu of the 2D version or in a complementary mode in a multi-
biometric scheme. Another prime application of 3D facial processing is the under-
standing of facial expressions for affective human-computer interfaces. 

Most of the existing methods for facial feature detection and person recognition  
assume frontal and neutral views only, and hence biometry systems have been de-
signed accordingly. However, this forced posing can be uncomfortable for the sub-
jects and limit the application domains. Therefore, the pressing need in this field is to 
develop algorithms working with natural and uncontrolled behaviour of subjects. A 
robust identification system can also cope with the subjects who try to eschew being 
recognized by posing awkwardly and worse still, by resorting to occlusions via  
dangling hair, eyeglasses, facial hair and other accessories. 

On the other hand, understanding of facial expressions has wide implications rang-
ing from psychological analysis to affective man-machine interfaces. Once the ex-
pression is recognized, this information can also be used to help the person identifier 
and/or adapt the interface. 
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The desiderata of a 3D face database enabling a range of facial analysis tasks rang-
ing from expression understanding to 3D recognition are the following: i) Action 
units from Facial Action Coding System (FACS) [1], both single and compound;  ii) 
Emotional expressions; iii) Ground-truthed poses;  iv) Occlusions originating from 
hair tassel, eyeglasses and a gesticulating hand. Motivated by these exigencies, we set 
out to construct a multi-attribute 3D face database. 

Table 1. List of some well known 3D face databases. Sub.: subjects Samp.: samples per 
subject, Occl.: occlusions, NA: not available. 

Database Sub. Samp. Total Expression Pose Occl. 

Bosphorus 105 31-54 4652 
34 expressions (action 
units & six emotions) 

13 yaw, 
pitch & 

cross rota-
tions  

4 occlusions 
(hand, hair, 
eyeglasses) 

FRGC v.2 
[2] 

466 1-22 4007 
Anger, happiness, sad-
ness, surprise, disgust, 

puffy 
NA NA 

BU-3DFE 
[3] 

100 25 2500 
Anger, happiness, sad-
ness, surprise, disgust, 

fear (in 4 levels) 
NA NA 

ND2006 [4] 888 1-63 13450 
Happiness, sadness, 

surprise, disgust, other 
NA NA 

York [5] 350 15 5250 
Happiness, anger, eyes 

closed, eye-brows raised

Uncon-
trolled up & 

down 
NA 

CASIA [6] 123 15 1845 
Smile, laugh, anger, 
surprise, closed eyes 

NA NA 

GavabDB 
[7] 

61 9 549 
Smile, frontal accentu-
ated laugh, frontal ran-

dom gesture 

Left, right, 
up, down 

NA 

3DRMA [8] 120 6 720 NA 
Slight 

left/right & 
up/down 

NA 

1.1   Comparisons with Major Open 3D Face Databases 

Various databases for 3D face recognition and occasionally 3D expression analysis 
are available. Most of them are focused on recognition; hence contain a limited range 
of expressions and head poses. Also, none of them contain face occlusions. One of the 
most popular 3D database FRGC v.2 [2], though the biggest one in the number  
of subjects has only a few mild expressions. The database richest in the spectrum of 
emotional expressions is BU-3DFE [3]. Every subject displays four intensity levels of 
the six emotions. Table I lists publicly available databases of relevance and compares 
with our database. 

The Bosphorus database represents a new comprehensive multi-expression, multi-
pose 3D face database enriched with realistic occlusions. The database has the follow-
ing merits: i) Many action units from the FACS [1] in addition to the basic six  
emotional expressions; ii) Various ground-truthed head poses are available; iii) A 
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number of facial occlusion types are captured from the subjects.  Finally in order to 
achieve more natural looking expressions, we have employed actors and actresses 
from professional theatres, opera and the conservatory school. 

The content of the database is given in Section 2, and data acquisition is explained 
in Section 3. In Section 4 the acquired data are evaluated. Finally conclusion is given 
in Section 5. 

2   Database Content 

The database consists of 105 subjects in various poses, expressions and occlusion 
conditions. 18 men had beard/moustache and 15 other subjects had short facial hair. 
The majority of the subjects are aged between 25 and 35. There are 60 men and 45 
women in total, and most of the subjects are Caucasian. Also, 27 professional ac-
tors/actresses are incorporated in the database. Up to 54 face scans are available per 
subject, but 34 of these subjects have 31 scans. Thus, the number of total face scans is 
4652. Each scan has been manually labelled for 24 facial landmark points such as 
nose tip, inner eye corners, etc, provided that they are visible in the given scan. These 
feature points are given in Table II. 

In the following subsections, the collected facial expressions, head poses and oc-
clusions are explained in detail. 

Table 2. Manually labeled 24 facial landmark points 

1-6. Inner/middle/outer eyebrow 
7-8. Outer left/right eye corners 
9-10. Inner left/right eye corners 
11-12. Nose saddle left/right 
13. Left nose peak 
14. Nose tip 
15. Right nose peak 
16. Left mouth corner 
17. Upper lip outer middle 
18. Right mouth corner 
19. Upper lip inner middle 
20. Lower lip inner middle 
21. Lower lip outer middle 
22. Chin middle 
23-24. Ear lobe left/right   

2.1   Facial Expressions 

Two types of expressions have been considered in the Bosphorus database. In the first 
set, the expressions are based on action units (AUs) of the FACS [1]. AUs are assumed to 
be building blocks of facial expressions, and thus they can constitute a flexible basis for 
them. Since each action unit is related with the activation of a distinct set of muscles, 
their veracity can be assessed quite objectively. Out of 44 AUs in FACS, we have col-
lected a subset which was easier to enact. The selected action units were grouped into 20 
lower face AUs, five upper face AUs and three AU combinations. 
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Fig. 1. Some samples from happiness expression captured from actors/actresses. Texture map-
ping and synthetic lighting is applied for rendering. 

 

Fig. 2. Lower face action units: lower lip depressor (a), lips part (b), jaw drop (c), mouth stretch 
(d), lip corner puller (e), left lip corner puller (f), right lip corner puller (g), low intensity lip 
corner puller (h), dimpler (i), lip stretcher (j), lip corner depressor (k), chin raiser (l), lip fun-
neler (m), lip puckerer (n), lip tightener (o), lip presser (p), lip suck (q), upper lip raiser (r), nose 
wrinkle (s), cheek puff (t). 

In the second set, facial expressions corresponding to certain emotional expres-
sions were collected. These are: happiness, surprise, fear, sadness, anger and disgust. 
These expressions were found to be universal among human races [9]. 

For the acquisition of action units, subjects were given explications about the  
intended action as well as negative feedback if they did not enact correctly. Also to 
facilitate the instructions, a video clip showing the correct facial motion for the corre-
sponding action unit was displayed on the monitor [10]. However, in the case of emo-
tional expressions, there were no video or photo guidelines so that subjects had to 
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improvise. Only if they were unable to enact, they were told to mimic the expression 
in a recorded video or photograph. Moreover, a mirror was placed in front of the sub-
jects for immediate visual feedback. 

In Fig. 2, Fig. 3, Fig. 4 and Fig. 5, the 34 expressions in the database are given. Also, 
Fig. 1 shows some 3D faces displaying the happiness emotions of actors/actresses. 
These facial images are rendered with texture mapping and synthetic lighting. 

It is important to note that not all subjects could properly produce all AUs, some of 
them were not able to activate related muscles or they could not control them. There-
fore, in the database few expressions are not available for some of the subjects. Also, 
the captured AUs need to be validated by trained AU experts. Second, since no video 
acquisition was possible for this database, the AUs were captured at their peak inten-
sity levels, which were judged subjectively. Notice that there was no explicit control 
for the valence of pronounced expressions. As in any other database, acted expres-
sions are not spontaneous and thoroughly natural. All these factors constitute the 
limitations of this database for expression studies. 

 

Fig. 3. Upper face action units: outer brow raiser (a), brow lowerer (b), inner brow raiser (c), 
squint (d), eyes closed (e) 

 

Fig. 4. Action unit combinations: jaw drop + low intensity lip corner puller (a), lip funneler + 
lips part (b), lip corner puller + lip corner depressor (c) 

 

Fig. 5. Emotional expressions: happiness (a), surprise (b), fear (c), sadness (d), anger (e),  
disgust (f) 
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2.2   Head Poses 

Various poses of the head are acquired for each subject (Fig. 6). There are three types 
of head poses which correspond to seven yaw angles, four pitch angles, and two cross 
rotations which incorporate both yaw and pitch. For the yaw rotations, subjects align 
themselves by rotating the chair on which they sit to align with stripes placed on the 
floor corresponding to various angles. For pitch and cross rotations, the subjects are 
required to look at marks placed on the walls by turning their heads only (i.e., no eye 
rotation). 

 

Fig. 6. Head poses: neutral (a); yaw rotations: +10° (b), +20° (c), +30° (d), +45° (e), +90° (f), -
45° (g) and -90° (h) pitch rotaions: upwards (i), slight upwards (j), slight downwards (k), 
downwards (l); right-downwards (m) and right-upwards (n) 

Notice that pose angles are prone to slight errors. Especially poses including pitch 
rotations can be subjective, since subjects were requested to turn their head toward 
target marks. This introduced slight angular errors due to differences of rotation cen-
tres which depended on subjects. Whenever subjects were tempted to rotate their eyes 
in lieu of their heads toward the targets, they were warned. 

2.3   Occlusions 

For the occlusion of eyes and mouth, subjects were allowed to choose a natural pose 
for themselves; for example, as if they were rubbing their eyes or as if they were sur-
prised by putting their hands over their mouth. For occlusion with eyeglasses, we had 
a pool of different eyeglasses so that each subject could select at random one of them. 
Finally, if subjects’ hair was long enough, their faces were also scanned with hair 
partly occluding the face (Fig. 7). 

The subject to subject variation of occlusions is more pronounced as compared to 
expression variations. For instance, while one subject occludes his mouth with the 
whole hand, another one may occlude it with one finger only; or hair occlusion on the 
forehead may vary a lot in tassel size and location. 
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Fig. 7. Occlusions: eye occlusion with hand (a), mouth occlusion with hand (b), eyeglasses (c) 
and hair (d) 

3   Data Acquisition 

Facial data are acquired using Inspeck Mega Capturor II 3D, which is a commercial 
structured-light based 3D digitizer device [11]. The sensor resolution in x, y & z 
(depth) dimensions are 0.3mm, 0.3mm and 0.4mm respectively, and colour texture 
images are high resolution (1600x1200 pixels). It is able to capture a face in less than 
a second. Subjects were made to sit at a distance of about 1.5 meters away from the 
3D digitizer. A 1000W halogen lamp was used in a dark room to obtain homogeneous 
lighting. However, due to the strong lighting of this lamp and the device’s projector, 
usually specular reflections occur on the face. This does not only affect the texture 
image of the face but can also cause noise in the 3D data. To prevent it, a special 
powder which does not change the skin colour is applied to the subject’s face. More-
over, during acquisition, each subject wore a band to keep his/her hair above the fore-
head to prevent hair occlusion, and also to simplify the face segmentation task. 

The propriety software of the scanner is used for acquisition and 3D model recon-
struction. We reconstructed faces right after the image acquisition, which although 
laborious, gave us an opportunity to quickly check the quality of the scanning, and 
repeat it if necessary.  In this phase data is also segmented manually by selecting a 
polygonal face region. In order to remove noise, several basic filtering operations 
(like Gaussian and Median filtering) are applied. Finally, each scan is down-sampled 
and saved in two separate files that store colour photograph and 3D coordinates. A 
segmented 3D face approximately consists of 35K points. 

4   Discussion of Data Quality 

Despite precautions and adjustments for maximum quality data, some errors and noise 
persisted due to the 3D digitizing system and setup conditions. The remaining bugs 
are explained below. 

Movements: Though images are captured within one second, motion of the subjects’ 
faces can be source of severe data corruption. A comfortable seat with a headrest was 
used to diminish the subject movements during long acquisition sessions. However, 
this problem can also happen for instance due to breathing or muscle contractions 
during expressions. Therefore, faces that were deemed to be seriously faulty were re-
captured. In the database, movement noise emerges especially in case of expressions, 
but depends on the subject and occurs sporadically. An example is shown in the mid-
dle row of Fig. 8. 
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Fig. 8. Commonly occurring problems during image acquisition and face reconstruction. Top 
row shows basic filtering and self-occlusion problem. In the middle row, noise due to hair, 
movement, and facial hair is seen. At the bottom left, an error in the depth level of the tongue, 
and at the right, its correction is displayed. 

Hairs and Eyes: Data on hair and facial hair, such as beard and eyebrows, generally 
causes spiky noise. Spiky surfaces arise also over the eyes. Basic smoothing filtering 
reduces these types of noises (Fig. 8). 

Self-occlusions: Since data are captured from single views with this system, self-
occlusions occur. The consequences are holes in the facial data, and uncompleted 
and distorted facial contours. Holes are formed due to missing data, mostly at the 
sides of the nose. Even slight head rotations generate high amount of self-occlusions. 
In Fig. 2 some of these problems are illustrated. No processing was performed for 
these problems. 

Discontinuity: Discontinuity problems develop either inside the mouth when mouth is 
open, or in occluded face scans. The reconstruction of depth values at these discon-
tinuous regions can sometimes be faulty. These errors are corrected by manual inter-
vention using the system’s software (Fig. 8). 

5   Conclusion and Future Work 

We have described the components, merits and limitations of a 3D face database, rich 
in Action Units, emotional expressions, head poses and types of occlusions. The in-
volvement of actors/actresses, especially in the case of expressions, is considered to 
be an advantage. 

Several projects in the area of biometry and man-machine interfaces are being con-
ducted on this database. Face recognition experiments have already been carried out on 
this database. These experiments consider the effect of face registration on the identifi-
cation performance when the reference face model is obtained from neutral faces while 
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test faces contain a variety of expressions. This research is presented in a companion 
paper [12]. Another research path is that of automatic facial landmarking. Automati-
cally located landmarks can be used as initial steps for better registration of faces, for 
expression analysis and for animation. Various algorithms ranging from active appear-
ance models to bunch graphs and statistical matched filter are studied [13]. 

For facial analysis and synthesis applications, non-rigid registration of faces is a 
very important intermediate step. Although variations due to expressions can be ana-
lyzed by rigid registration or landmark-based non-rigid registration methods, more 
faithful analysis can only be obtained with detailed non-rigid registration. Improved 
registration with non-rigid methods facilitates automatic expression understanding, 
face recognition under expressions and realistic face synthesis studies. The ill-posed 
problem of non-rigid registration has been addressed in [14]. 

Finally, this database has been used for 3D face detection purpose. A recently in-
troduced generic transformation invariant 3D feature detector [15] is being experi-
mented to locate scanned faces in 3D space. 
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Abstract. This paper presents an evaluation of several 3D face recogniz-
ers on the Bosphorus database which was gathered for studies on expres-
sion and pose invariant face analysis. We provide identification results of
three 3D face recognition algorithms, namely generic face template based
ICP approach, one-to-all ICP approach, and depth image-based Principal
Component Analysis (PCA) method. All of these techniques treat faces
globally and are usually accepted as baseline approaches. In addition,
2D texture classifiers are also incorporated in a fusion setting. Exper-
imental results reveal that even though global shape classifiers achieve
almost perfect identification in neutral-to-neutral comparisons, they are
sub-optimal under extreme expression variations. We show that it is pos-
sible to boost the identification accuracy by focusing on the rigid facial
regions and by fusing complementary information coming from shape
and texture modalities.

1 Introduction

3D human face analysis has gained importance as a research topic due to recent
technological advances in 3D acquisition systems. With the availability of afford-
able 3D sensors, it is now possible to use three-dimensional face information in
many areas such as biometrics, human-computer interaction and medical anal-
ysis. Especially, for automatic face recognition, expression understanding, and
face/facial feature localization problems, three-dimensional facial data offers bet-
ter alternatives over using 2D texture information alone [1]. The information loss
when projecting the inherently 3D facial structure to a 2D image plane is the
major factor that complicates the task of analyzing human faces. Problems arise
especially when adverse situations such as head pose variations, changes in il-
lumination conditions, or extreme facial expressions are present in the acquired
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data. The initial motivation for the exploitation of 3D information was to over-
come these problems in human facial analysis. However, most of the proposed
solutions are still limited to controlled acquisition conditions and constrained
to frontal and mostly neutral 3D faces. Although there are increasing number
of studies that focus on pose and/or expression invariant face recognition, the
databases upon which they are based have not been systematically constructed
for the analysis of these variations or they remain limited in scope. For example,
the most frequently used 3D face database, the Face Recognition Grand Chal-
lenge (FRGC) database [2], contains mostly frontal faces with slight arbitrary
pose variations. In the FRGC database, there are several acquisitions for differ-
ent expressions which are labeled according to the emotions such as sadness and
happiness. Comparison of publicly available 3D face databases in terms of pose,
expression and occlusion variations can be found in [3].

The desiderata of a 3D face database enabling a range of facial analysis tasks
ranging from expression analysis to 3D recognition are the following: i) Ac-
tion units (FACS) [4], both single and compound; ii) Emotional expressions; iii)
Ground-truthed poses; iv) Occlusions originating from hair tassel and a gestic-
ulating hand. Motivated by these exigencies, we set out to construct a multi-
attribute database. In this paper, we present the characteristics of the database
collected as well as preliminary results on face registration and recognition.

2 The Bosphorus 3D Face Database

The Bosphorus database is a multi-expression, multi-pose 3D face database en-
riched with realistic occlusions such as hair tassel, gesticulating hand and eye-
glasses [5,3]. The variety of expressions, poses and occlusions enables one to set
up arbitrarily challenging test situations along the recognition axis or along the
expression analysis axis. We want to point out the opportunities that the Bospho-
rus database provides for expression understanding. The Bosphorus database
contains two different types of facial expressions: 1) expressions that are based
on facial action units (AU) of the Facial Action Coding System (FACS) and
2) emotional expressions that are typically encountered in real life. In the first
type, a subset of action units are selected. These action units are grouped into
three sets: i) 20 lower face AUs, ii) five upper face AUs and iii) three AU com-
binations. In the second type, we consider the following six universal emotions:
happiness, surprise, fear, sadness, anger and disgust. Figure 1(b) shows all differ-
ent types of expressions. To the best of our knowledge, this is the first database
where ground-truthed action units are available. In order to achieve more natural
looking expressions, we have employed professional actors and actresses.

Facial data are acquired using Inspeck Mega Capturor II 3D, which is a com-
mercial structured-light based 3D digitizer device [6]. The 3D sensor has about
x = 0.3mm, y = 0.3mm and z = 0.4mm sensitivity in all dimensions and a
typical pre-processed scan consists of approximately 35K points. The texture
images are high resolution (1600 × 1200) with perfect illumination conditions.
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(a) (b)

Fig. 1. a) Manually located landmark points and b) expressions for the Bospho-
rus database

The locations of several fiducial points are determined manually on both 2D
and 3D images. On each face scan, 24 points are marked on the texture images
provided that they are visible in the given scan. The landmark points are shown
in Figure 1(a).

The Bosphorus database contains 3396 facial scans of 81 subjects. There are
51 men and 30 women in the database. Majority of the subjects are Caucasian
and aged between 25 and 35. The Bosphorus database has two parts: the first
part, Bosphorus v.1, contains 34 subjects and each of these subjects has 31
scans: 10 types of expressions, 13 different poses, four occlusions, and four neu-
tral/frontal scans. The second part, Bosphorus v.2, has more expression varia-
tions. In Bosphorus v.2, there are 47 subjects having 53 scans1. Each subject
has 34 scans for different expressions, 13 scans for pose variations, four occlu-
sions and one or two frontal/neutral face. 30 of these 47 subjects are professional
actors/actresses.

3 Face Recognition Methodology

In this work, we apply commonly used techniques in face recognition to pro-
vide benchmarks for further studies. We have selected five face recognition
approaches: three of them use shape information, and two use facial texture
information. Two of the shape-based approaches are based on the Iterative Clos-
est Point (ICP) algorithm, namely one-to-all ICP and average face model-based
ICP (AFM-based ICP) [7]. The third one employs PCA coefficients obtained
from 2D depth images. These techniques are explained in detail in Section 3.2.
Texture-based approaches use either raw pixel information or PCA coefficients

1 Some subjects have fewer than 53 scans due to acquisition errors.
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(eigenface technique). Before proceeding to identification methods, it is worth-
while to mention landmarking of faces because all these methods heavily rely on
the quality of the initial alignment of facial surfaces.

3.1 Landmarking

Almost all 3D face recognition algorithms first need an accurate alignment be-
tween compared faces. There are various methods to align faces and most of them
require several landmark locations that are easily and reliably detectable. ICP-
based approaches which are explained later in this section, usually require these
points at the initialization step. In our work, in addition to using 22 manually
located landmark coordinates, we employ an automatic landmark localization
method which estimates these points using the shape channel. The automatic
landmarking algorithm consists of two phases [8]. In the first phase, a statisti-
cal generative model is used to describe patches around each landmark. During
automatic localization, patches extracted from the facial surface are analyzed
with these statistical models, and the region that produces the best likelihood
value for each corresponding model is selected as the location of a landmark. A
coarse-to-fine strategy is used to keep the search fast. We use inner and outer eye
corners, nose tip and mouth corners, as these landmarks correspond to discrim-
inative local structures. Figure 2(a) and 2(b) in Section 4 shows automatically
found landmarks for a sample face image.

3.2 Shape-Based Matchers

One-to-All ICP Algorithm: The 3D face recognition problem can be con-
sidered as a special case of a 3D object recognition problem. The similarity
between two objects is inferred by features calculated from 3D models. Notice
that most approaches require precise alignment (registration) of objects before
similarity calculation and the performance depends heavily upon the success of
registration [1].

The Iterative Closest Point (ICP) algorithm [9] has been one of the most
popular registration techniques for 3D face recognition systems due to its sim-
plicity The ICP algorithm basically finds the best rigid transformation (i.e.,
translation, scale, and rotation matrices) to align surface A to surface B. Tradi-
tionally, a probe face is registered to every gallery face and an estimate of the
volumetric difference between aligned facial surfaces is used as a dissimilarity
measure. Therefore, we call this method one-to-all ICP. If we assume 3D point
cloud representations of faces, dissimilarity can be estimated by the sum of the
distances between corresponding point pairs in given facial surface pair. Indeed,
ICP uses this measure during its iterations and after convergence, it outputs this
dissimilarity measure as the alignment error.

AFM-based ICP Algorithm: The one-to-all ICP approach requires as many
alignments as the size of the gallery set, this easily becomes infeasible when the
gallery set size is large. An alternative approach would be to use a generic face
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model. All gallery faces are registered to this generic face model offline, before the
identification phase [10], [11]. Thereby, only alignments between the probe faces
and the generic face are needed to compute dissimilarities for the whole gallery
set. This approach significantly shortens the identification delay by reducing the
time complexity of the alignment phase. In the rest of the paper, we refer to this
method as AFM-based registration.

Depth Image-Based PCA Algorithm: Most 3D sensors provide shape data
in the form of 3D point clouds for the visible part of the object being scanned.
For frontal facial 3D scans, the visible region usually contains the ear-to-ear
frontal part of a human face. Therefore, there is at most one depth measure-
ment, i.e., z coordinate, for any (x,y) coordinate pair. Due to this property, it is
possible to project 2.5D data to an image plane where the pixels denote depth
values. Images constructed in this way are called depth images or range images.
3D data should undergo post-processing stages during the conversion to depth
images. Surface fitting is one of the important post-processing steps. A practical
option for surface fitting is to obtain 3D triangulation of point cloud data and
then to estimate the surface points inside the triangular patches by bilinear in-
terpolation. Except for steep regions, such as the sides of the nose, information
loss is minimal in depth image construction. Once 3D information is converted
to 2D images, numerous approaches employed for 2D texture-based face recog-
nition systems can be used for 3D face identification. Among them, using PCA
coefficients as features is usually accepted as a baseline system for 3D depth
image-based recognition. In our work, we perform whitening after computing
PCA coefficients and use cosine distance for similarity calculation. As a pattern
classifier, 1-nearest neighbor algorithm produces the estimated class label.

3.3 2D Texture Matchers

The Bosphorus database contains high quality texture information for each 3D
facial model. In order to compare the performances of shape and texture chan-
nels we also implemented two 2D recognizers. The first, pixel-based method,
simply uses gray-scale pixel information to represent a face. Texture images are
normalized by scaling with respect to eye-to-eye distances. Illumination varia-
tions are handled by histogram equalization. In the pixel-based method, we use
two regions: i) the whole face and ii) the upper facial region to test expression
sensitivity. The second texture-based approach is the Eigenface technique where
each face is transformed to a subspace by a PCA projection. As in the depth
image method, we perform whitening and use 1-nearest neighbor classifier.

4 Experimental Results

We have performed recognition experiments on a subset of the Bosphorus
database. The selected subset contains only neutral and expression-bearing im-
ages without any pose variations or occlusions. Only one neutral image per
person is used for enrollment, and the rest are used as the test set. First three
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rows of Table 1 show three experimental configurations. For the Bosphorus v.1,
we have two experiments: one with the neutral probe set and the other with
the non-neutral probe set. For v.2, there is only one experiment containing all
non-neutral images of every subject in the probe set.

We have analyzed the effect of the number of landmarks and the effect of au-
tomatically detected landmarks in our tests. We use several subsets of landmarks
that are presented in Figure 1(a). The performance of the automatic landmark
detection module is summarized in Figure 2(c). We see that the most successful
landmarks are the inner eye corners. In approximately 80% of the cases, they are
found within tolerance, where the tolerance threshold is defined as 10% of the
eye-to-eye distance. In general, inner eye corners and nose tip can be detected
successfully, but outer eyebrows, and chin tip point usually can not be local-
ized efficiently. The performance of the depth-image based automatic landmark
detection is low. However, we include it here to test the performance of face
recognizers with automatic landmarks.

(a) (b) (c)

Fig. 2. Automatically located landmarks: the locations of a) seven fiducial landmarks
found by the first phase, b) all 22 landmarks after the second phase, and c) the perfor-
mance of automatic landmarking. Circle size denotes average pixel distance error for
each landmark location.

We have performed recognition experiments on the v.1 and v.2 expression
subsets, as summarized in Table 1. The first experiment was the one-to-all ICP
experiment (One-to-All ICPM22 method in Table 1): Although this takes a long
time, we provide these results as a benchmark. In the ICP coarse alignment
stage, we used the 22 manually detected landmarks. As observed in Table 1,
one-to-all ICP yields 99.02% correct identification on the v.1 neutrals. However,
the performance drops to 74.04% for v.1 non-neutral and to 72.41% for v.2.
This performance drop is to be expected, since the gallery includes only one
neutral face. Next, we compare the AFM approach with the one-to-all ICP. The
AFM approach is very fast since it performs only one match. The results of
this approach with 22 manually detected landmarks is denoted as AFMM22 in
Table 1. On the v.1 database, AFM based identification classifies every facial



3D Face Recognition Benchmarks on the Bosphorus Database 63

Table 1. Correct classification rates (%) of various methods on the Bospho-
rus database. Coarse alignment configurations used in these methods are denoted as
subscripts: M and A is for manual and automatic landmarking, respectively. The num-
bers used in the subscripts denote the number of landmarks used; i.e., AFMM5 is the
AFM method aligned with five manual landmark points.

Method
v.1 v.1 v.2

Neutral Non-neutral Non-neutral
Gallery Set Size 34 34 47
Probe Set Size 102 339 1508
AFMM5 99.02 69.62 65.12
AFMM7 100.00 73.75 68.83
AFMM8 99.02 72.27 69.36
AFMM22 100.00 71.39 67.67
AFMA7 80.39 62.24 -
AFMA22 81.37 62.24 -
One-to-All ICPM22 99.02 74.04 72.41
DI − PCAM22 (Whole face) 100.00 71.09 70.56
DI − PCAM22 (Eye,Nose) 100.00 85.55 88.79
TEX-Pixel (Whole face) 97.06 93.51 92.52
TEX-Pixel (Upper face) 97.06 90.56 92.59
TEX-Eigenface (Whole Face) 97.06 87.61 89.25
Fusion of AFMM7 and TEX-Pixel (Whole face) - - 95.09
Fusion of DI − PCAM22 (Eye,Nose) and - - 98.01
and TEX-Pixel (Whole face)

image in the neutral probe accurately. However, in the non-neutral v.1 probe
set, the correct classification rate drops to 71.39%. For v.2 tests, only 67.67%
of the probe set is identified correctly. On comparison with one-to-all results,
we see that AFM performs better on neutral faces, but suffers a small drop in
performance in faces with expressions. Since this drop is not very large, we use
the AFM approach for the rest of the tests.

The effect of facial landmarks on the identification rate is next analyzed.
For this purpose, we look further into two quantities: 1) The subset of facial
landmarks that should be used in coarse alignment and 2) The performance
change caused by the use of automatic landmark localizer. For the first case, we
formed three landmark subsets of size five, seven and eight. Landmark subset
of size five only uses landmark points around the nose. The landmark set with
seven landmarks contains eye corner points, nose tip, and mouth corners. The
eight-point subset is the same as the seven-point set but with the added chin
tip point. We see that using only seven landmarks leads to better performance
than using all 22 landmarks. Accuracy in v.1 non-neutral set is 73.75% (see
Table 1, marked as AFMM7) and in v.2, it is 68.83%. If faces are registered
according to the nose region only (using five landmarks, AFMM5 in Table 1),
we see degradation in accuracy. Adding chin tip to the previously selected seven
landmarks does not change the identification rate significantly.
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If we turn back to our second question about the effect of automatic land-
marking on the identification rates, we see significant performance drop with au-
tomatic landmarking. Entries marked as AFMA7 and AFMA22 in Table 1 show
that, irrespective of which landmark subset is used, there is approximately 20%
and 10% accuracy decrease in neutral and non-neutral probe sets, respectively.
This is mostly due to the localization errors in landmark detection.

Regarding all ICP-based experiments, we see that AFMM7 presents a good
compromise in that: i) It is computationally much faster that one- to-all perfor-
mance and performs only a little worse; and ii) It relies on only 7 landmarks,
which are easier to find.

The next set of experiments are with the depth image PCA method
(DI − PCAM22 methods in Table 1). We have tried two versions: Using the whole
face, and using only the eyes and the nose regions. Both perform perfectly with
the neutral faces in v.1. In non-neutral v.1, and v.2, the performance of the whole
face is 71.09% and 70.56%, respectively. When only the eye and nose regions are
included, performance rises to 85.55% in v.1 non-neutrals and to 88.79% for v.2.
Overall, we see that local PCA-based representation of eye and nose region is
the best shape modality-based recognizer.

We have also used 2D textures to classify the faces. We have obtained very
good identification performance with texture images. Note that the texture im-
ages are of very high quality, with perfect illumination and high resolution.
The performance obtained with texture pixels is reported for i) the whole face
and ii) the upper part (denoted as TEX-Pixel in Table 1). The eigenface tech-
nique is also applied (TEX-Eigenface). Identification performances of all three
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Fig. 3. a) CMC curve for i) local PCA based depth image algorithm, ii) pixel-based
texture algorithm and iii) their fusion, and b) Misclassified faces in the v.2 set by the
fusion of DI-PCA and TEX-Pixel method
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algorithms on the neutral v.1 are identical: 97.06%. On the non-neutral v.1, the
three algorithms obtain 93.51%, 90.56%, and 89.25%, respectively. Recognition
performance on the v.2 are unexpectedly higher: 92.52%, 92.59% and 89.25%,
respectively. We note that the texture performances are higher than the shape
performances. This is due to the perfect illumination conditions and the high
resolution of the 2D images.

And lastly, we fuse the results of the 3D and 2D classifiers. Using product
rule to combine the dissimilarity scores of AFM-based ICP method and pixel-
based textural classifier (See Table 1, Fusion of AFMM7 and TEX-Pixel), we
achieve 95.09% correct identification rate in the v.2 experiment. If DI-PCA of
the eye/nose region is used as a shape classifier in fusion, 98.01% accuracy is ob-
tained (See Figure 3(b) for all 30 images misclassified in the v.2 set). Cumulative
matching characteristic (CMC) curves of local DI-PCA and texture classifiers,
together with their fusion performance, are shown in Figure 3(a). Notice that
although rank-1 performance of the texture classifier is higher, shape classifier
becomes superior after rank 3.

5 Conclusion

In this work, benchmarking studies on a new challenging 3D face database are
presented. We have used 3D recognition methods with proven performance: Two
of these algorithms use ICP alignment for dissimilarity calculation. One is based
on generic face template (AFM) for fast registration, and the other exhaustively
searches the closest face model from the gallery set for a given probe image.
In addition to ICP-based methods, depth images are also used where feature
construction is handled via the PCA technique.

3D cameras almost always yield 2D texture images in addition to 3D data.
At close range and under good illumination, the texture images turn out to be
of high quality. In fact, texture images singly or in complementary role to 3D
data can boost the performance. In our study, fusion of the shape and texture
based methods has yielded recognition performances as high as 98.01%. The
main conclusions of our work are as follows:

– The performance obtained with the one-to-all registration is comparable to
that of AFM registration, both with neutral and expression faces. On the
other hand, AFM method is orders of magnitude faster. Therefore AFM is
preferable.

– The 3D recognition performance suffers heavily from inexactitude of land-
marks. The present landmarking algorithm causes a heavy performance drop
of 10-20% percentage points. Therefore real-time and reliable face landmark-
ing remains still an open problem.

– Depth images with PCA form a viable competitor to the 3D point cloud
feature set, and in fact outperform it. It remains to see if alternative feature
sets, e.g., subspace methods or surface normals can bring improvements.

– The fusion of 2D texture and 3D shape information is presently the scheme
with the highest performance.
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The Bosphorus database is suitable for studies on 3D human face analysis un-
der challenging situations such as in the presence of occlusion, facial expression,
pose variations. The future work will consist of i) improving landmark localiza-
tion performance, ii) testing the sensitivity of 3D face recognition algorithms
under pose changes, and iii) employing different representation methods other
than point clouds and depth images.
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11. Gökberk, B., İrfanoğlu, M., Akarun, L.: 3D shape-based face representation and
feature extraction for face recognition. Image and Vision Computing 24(8), 857–869
(2006)

http://www.inspeck.com/


B. Schouten et al. (Eds.): BIOID 2008, LNCS 5372, pp. 67–81, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Identity Management in Face Recognition Systems 

Massimo Tistarelli and Enrico Grosso 

Università di Sassari – Computer Vision Laboratory, 
Alghero, Italy 

{tista,grosso}@uniss.it 

Abstract. Face recognition is one of the most challenging biometric modalities 
for personal identification. This is due to a number of factors, including the 
complexity and variability of the signal captured by a face device. Several  
issues incur in the management of a face template as user’s identity. Data di-
mensionality reduction, compactness of the representation, uniqueness of the 
template and ageing effects, are just but a few of the issues to be addressed. In 
this paper we present the current state of the art in face recognition technology 
and how this related to the proper management of a user’s identity. Some real 
cases are presented and some conclusions are drawn. 

Keywords: face recognition, biometrics, identity management, pattern recogni-
tion, computer vision. 

1   Introduction 

A recent poll from Harris Interactive, involving 1,000 adults within US, shows that 
the majority of US citizens would favor an increase in surveillance systems to in-
crease security. 70% of the interviewed were in good favor of expanded camera sur-
veillance on streets and in public places. This is but one of the many recalls to the 
impact of biometric research in social life. The increasing need for reliable security 
systems, in turn, highlights the need for pursuing advanced research in the field. It is 
not the case, not anymore, that a simple algorithmic solution can provide the answer 
to the emerging needs. It is rather important that reliable, easy to use, and smart  
systems are devised and introduced in the society. 

Security is primarily advocated in recurrent scenarios such as, street surveillance 
and access control. In these applications recognition at a distance is the key element 
for a successful identification. There are not as many viable solution for identification 
at a distance. Even though several remarkable examples are emerging from iris and 
gate technologies, today’s most reliable systems are those based on face recognition. 

Face recognition/verification has attracted the attention of researchers for more 
than two decades and it is among the most popular research areas in the field of com-
puter vision and pattern recognition. Several approaches have been proposed for face 
recognition based on 2D and 3D images. In general, face recognition technologies are 
based on a two step approach: 

• an off-line enrollment procedure is established to build a unique template 
for each registered user. The procedure is based on the acquisition of a 
pre-defined set of face images (or a complete video), selected from the  
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input image stream, and the template is build upon a set of features ex-
tracted from the image ensemble; 

• an on-line identification or verification procedure where a set of images are 
acquired and processed to extract a given set of features. From these fea-
tures a face description is built to be matched against the user's template. 

Regardless of the acquisition devices exploited to grab the image streams, a simple 
taxonomy can be based on the computational architecture applied to: extract powerful 
features for identification and to derive a template description for subsequent match-
ing. The two main algorithmic categories can be defined on the basis of the relation 
between the subject and the face model, i.e. whether the algorithm is based on a sub-
ject-centered (eco-centric) representation or on a camera-centered (ego-centric) repre-
sentation. The former class of algorithms relies on a more complex model of the face, 
which is generally 3D or 2.5D, and it is strongly linked with the 3D structure of the 
face. 

These methods rely on a more complex procedure to extract the features and build 
the face model, but they have the advantage of being intrinsically pose-invariant. The 
most popular face-centered algorithms are those based on 3D face data acquisition 
and on face depth maps. The ego-centric class of algorithms strongly relies on the 
information content of the gray level structures of the images. Therefore, the face  
representation is strongly pose-variant and the model is rigidly linked to the face ap-
pearance, rather than to the 3D face structure. The most popular image-centered algo-
rithms are the holistic or subspace-based methods, the feature-based methods and the 
hybrid methods. 

Over these fundamental classes of algorithms several elaborations have been pro-
posed. Among them, the kernel methods greatly enhanced the discrimination power of 
several ego-centric algorithms, while new feature analysis techniques such as the lo-
cal binary pattern (LBP) representation greatly improved the speed and robustness of 
Gabor-filtering based methods. The same considerations are valid for eco-centric  
algorithms, where new shape descriptors and 3D parametric models, including the 
fusion of shape information with the 2D face texture, considerably enhanced the accu-
racy of existing methods. 

2   Face Biometric Technologies 

Gartner Group in 2005 recognized biometrics to be one of the most promising IT 
technologies for the future. The graph in figure 1 well represents the expected follow-
up of biometrics in the IT research and market for the near future. AT the same time, 
biometric apparently received more attention from the media and advertising compa-
nies, than the real application breakthrough. This, in turn, indicates the requirement 
for an increased focus on killer applications and a closer involvement of industries in 
research. 

While several industrial products for deploying face recognition already exist, still 
there is a great need to enhance the basic technologies implied. For example, ageing, 
spoofing and illumination compensation are still open issues which require to be ad-
dressed. At the same time, the proper management of the user’s identity can not be  
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viewed as detached from the algorithms applied to process the raw signal and to build 
the biometric template. In the case of face biometrics several techniques have been 
proposed which can be broadly divided into two main categories: image-centered 
(eco-centric) and subject-centered (ego-centric). In this paper the eco-centric methods 
will be considered as well as their impact in the management of the user’s identity. 

 

Fig. 1. Gartner’s group graph representing the technology trend in IT 

Almost all biometric identification techniques, including face-based methods, rely 
on a two step process. In the first step a set of features are extracted from the images. 
In the second step the extracted features are fed into a classifier to actually identify 
the class to which the probe face belongs. The classification is a crucial process which 
can be easily tailored to any feature representation. Once the classifier is tuned to the 
adopted feature representation, it must be also tuned to the population of subjects to 
be correctly classified. Toward this end it is necessary to model each possible instance 
of all possible classes (the “rest of the world”) to define the discrimination parameters 
(the classification threshold) to distinguish the representation of one subject from 
every other subject. 
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On the contrary, the feature extraction heavily depends on the template representa-
tion and on the physical characteristics of the raw biometric signal. This leads to a 
variety of different (and incompatible) methods to draw face-based identity represen-
tations. The differences include the template size, the discrimination power and the 
compactness of the representation. 

The heterogeneity in the face-based representations led to a proliferation of identi-
fication systems and industrial solutions which are hardly compatible. The reminder 
of the paer tries to summarize the main advantages and drawbacks of the main algo-
rithms for face-based identity representation and matching. 

2.1   Subspace Methods 

The most popular techniques for frontal face identification and authentication are the 
subspace methods. These algorithms consider the entire image as a feature vector with 
the aim to find projections (bases) that optimize some criterion defined over the fea-
ture vectors that correspond to different lasses. Then the original high dimensional 
image space is projected into a low dimensional one. In all these approaches the face 
representation (the template) is a vector of eigenvalues determining the position of the 
subject’s sample in the feature space, defined by the basis vectors. The classification 
is usually performed according to a simple distance measure in the final multidimen-
sional space. The recurrent obsession in subspace methods is to reduce the dimen-
sionality of the search space. A large database with 1000 gray level images with a 
resolution of 512x512 pixels, can be reduced to a small set of vectors, each with the 
same size of each sample image. Even though the dimensionality reduction is  
performed according to a minimization criterion to enhance some data features, the 
immediate effect of this process is to reduce the information content in the data. Di-
mensionality reduction always produces an effect similar to low-pass filtering, where 
the size of the data is reduced at the cost of a lower discrimination power. 

Various criteria have been employed in order to find the bases of the low dimen-
sional spaces. Some of them have been defined in order to find projections that they 

 

 

Fig. 2. (left) Sample database composed of 92 faces. (right) Set of 92 base vectors obtained 
with the PCA decomposition. 
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best express the population without using the information of how the data are separated 
to different classes. Another class of criteria is the one that deals directly with the dis-
crimination between classes. Finally, statistical independence in the low dimensional 
feature space is a criterion that is used in order to find the linear projections. 

The first method employed for low dimension representation of faces is the eigen-
faces (PCA) approach [1]. This representation was used in [2] for face recognition. 
The idea behind the eigenface representation is to apply a linear transformation that 
maximizes the scatter of all projected samples. This operation corresponds to a singu-
lar value decomposition of the data ensemble. The PCA approach was extended to a 
nonlinear alternative using kernel functions (KPCA) [3]. Recently KPCA with frac-
tional power polynomial kernel has been successfully used along with Gabor features 
for face recognition [4]. 

Another subspace method that aims at representing the facial face without using 
class information is the non negative matrix factorization (NMF) [5]. The NMF algo-
rithm, like PCA, represents a face as a linear combination of bases. The difference 
with PCA is that it does not allow negative elements in both the bases vectors and the 
weights of the linear combination. This constraint results to radically different bases 
than PCA. On the one hand the bases of PCA are eigenfaces, some of which resemble 
distorted versions of the entire face. On the other hand the bases of NMF are localized 
features that correspond better to the intuitive notions of face parts [5]. An extension 
of NMF that gives even more localized bases by imposing additional locality  
constraints is the so-called local non negative matrix factorization (LNMF) [6].  

Linear discriminant analysis (LDA) is an alternative method to PCA maximizing 
the separation among different classes (subjects). In [7,8], it was proposed to apply 
LDA in a reduced PCA space for facial image retrieval and recognition, the so-called 
fisherfaces. In this approach the PCA decomposition is first applied ensuring the scat-
ter matrix to be non-singular. The dimension of the new features is further reduced by 
using Fisher's Linear Discriminant (FLD) optimization criterion to produce the final 
linear transformation. The drawback of this method is the low-pass effect produced by 
the PCA. The initial dimensionality reduction may sensibly reduce the discrimination 
power of the final representation [11]. 

To overcome this limitation, direct LDA (D-LDA) algorithms for discriminant fea-
ture extraction were proposed [9,10,11]. The DLDA algorithms are usually applied 
using direct diagonalization methods for finding the linear projections that optimize 
the discriminant criterion. 

To make nonlinear problems tractable, LDA has been generalized to its kernel ver-
sion, namely general discriminant analysis (GDA) [12] or kernel Fisher discriminant 
analysis (KFDA) [13]. In GDA the original input space is projected using a nonlinear 
mapping from the input space (the facial image space) to a high-dimensional feature 
space, where different classes of faces are supposed to be linearly separable. The idea 
behind GDA is to perform LDA in the feature space instead of the input space. The 
interested reader can refer to [12-16.] for different versions of KFDA and GDA.  

The main drawback of the methods that use discriminant criteria is that they may 
cause overtraining. Moreover, it is quite difficult to build a discriminant function on 
small training sample sets with reasonable generalization abilities [17,18]. This is true 
in many practical cases where a very limited number of facial images are available in 
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database training sets. The small number of facial images, for each face class, affects 
both linear and the nonlinear methods where the distribution of the client class should 
be evaluated in a robust way [13]. In [19] it has been shown that LDA outperforms 
PCA only when large and representative training datasets are available. 

In order to find linear projections that minimize the statistical dependence between 
its components the independent component analysis has been proposed [20, 21] for 
face recognition.  ICA has been applied in the original input space of the facial  
images [20] or using Gabor based features of the facial images [21]. The nonlinear 
alternative of ICA using kernel methods has been also proposed in [22]. 

2.2   Elastic Graph Matching 

The elastic graph matching (EGM) is a practical implementation of the dynamic link 
architecture (DLA) for object recognition [23]. In EGM, the reference object graph is 
created by overlaying a rectangular elastic sparse graph on the object image and cal-
culating a Gabor wavelet bank response at each graph node. The graph matching 
process is implemented by a stochastic optimization of a cost function which takes 
into account both jet similarities and node deformation. A two stage coarse-to-fine 
optimization procedure suffices for the minimization of such a cost function. 

In [24] it has been shown that EGM outperforms eigenfaces and self-associative 
neural networks for face recognition. In [25] the graph structure has been enhanced by 
introducing a stack like structure, the so-called bunch graph. In the bunch graph struc-
ture for every node a set of Gabor jets is computed for different instances of a face 
(e.g., with mouth open or closed, etc.). That way, the bunch graph representation cov-
ers a variety of possible face appearances [26]. Practical methods for increasing the 
robustness of EGM against translations, deformations and changes in background 
have been presented in [27,28]. 

Several variations of the standard EGM have been proposed [29-33]. Among them, 
is the morphological elastic graph matching (MEGM) where the Gabor features are 
replaced by multiscale morphological features, obtained through a dilation-erosion of 
the facial image [32]. In [29] the standard coarse to fine approach [28] for EGM is 
replaced by a simulated annealing method that optimizes a cost function of the jet 
similarity distances subject to node deformation constraints. The multiscale morpho-
logical analysis has given comparable verification results with the standard EGM  
approach, without the need to compute Gabor filter banks. Another variant of EGM 
has been presented in [33], where morphological signal decomposition has been used 
instead of the standard Gabor analysis. 

To enhance the EGM performance, several techniques have been proposed weight-
ing the graph nodes according to their relevance for recognition [29,33-35]. As an 
example, linear discriminant techniques have been employed for selecting the most 
discriminating features [28,29,33,36,37]. 

In [34] the selection of the weighting coefficients was based on a nonlinear func-
tion that depends on a small set of parameters. These parameters have been deter-
mined on the training set by maximizing a criterion using the simplex method. In 
[29,33] the set of node weighting coefficient was not calculated by some criterion 
optimization but by using the first and second order statistics of the node similarity 
values. A Bayesian approach for determining which nodes are more reliable has been 
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used in [26]. A more sophisticated scheme for weighting the nodes of the elastic 
graph, by constructing a modified class of support vector machines, has been pro-
posed in [35]. It has been also shown that the verification performance of the EGM 
can be highly improved by proper node weighting strategies. 

The subspace of the face verification and recognition algorithms consider the entire 
image as a feature vector and their aim is to find projections that optimize some crite-
rion defined over the feature vectors that correspond to different classes. The main 
drawback of these methods is that they require the facial images to be perfectly 
aligned. That is, all the facial images should be aligned in order to have all the fidu-
cial points (e.g. eyes, nose, mouth, etc.) represented at the same position inside the 
feature vector. For this purpose, the facial images are very often aligned manually and 
moreover they are anisotropically scaled. Perfect automatic alignment is in general a 
difficult task to be assessed. On the contrary, elastic graph matching does not require 
perfect alignment in order to perform well. The main drawback of the elastic graph 
matching is the time required for multiscale analysis of the facial image and for the 
matching procedure. A recent approach tries to overcome this limitation by using the 
Shift Invariant Feature Transform (SIFT) as graph nodes [38,39]. SIFT features can 
be extracted with a fast algorithm from the images, thus reducing the computation 
time required to build the representation. This enhanced method proved to produce 
superior performances than holistic methods, on standard databases. 
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Fig. 3. Example graph constructed from a set of 11 SIFT feature points 

2.3   Dynamic Face Recognition 

Historically face recognition and authentication has been treated as the matching be-
tween snapshots containing the representation of a face. In the human visual system 
the analysis of visual information is never restricted to a time-confined signal. Much 
information on the analysed visual data is contained within the temporal evolution of 
the data itself. Therefore a considerable amount of the “neural power” in humans is 
devoted to the analysis and interpretation of time variations of the visual signal. 

On the other hand, processing single images considerably simplifies the recogni-
tion process. Therefore, the real challenge is to exploit the added information in the 
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time variation of face images, limiting the added computational burden. An additional 
difficulty in experimenting dynamic face recognition is the dimensionality of the re-
quired test data. A statistically meaningful experimental test requires a considerable 
number of subjects (at least 80 to 100) with several views taken at different times. 
Collecting video streams of 4 to 5 seconds from each subject and for each acquisition 
session implies the storage and subsequent processing of a considerable amount (hun-
dreds of Gigabytes) of data. 

There are only few face recognition systems in the literature based on the analysis 
of image sequences. The developed algorithms generally exploit the following advan-
tages from the video sequence: 

1. The matching process is repeated over more images and the resulting scores are 
combined according to some criterion. Several approaches have been proposed to 
integrate multiple similarity measurements from video streams. Most of the pro-
posed algorithms rely on the concept of data fusion [64] and uncertainty reduction 
[73]. 

2. The input sequence is filtered to extract the image data best suited for recognition. 
This method is often coupled with a template representation based on a sequence 
of face views. An example of this use is the IRDB (Incremental Refinement of De-
cision Boundaries) [81,89] where the face representation is dynamically augmented 
by processing and selecting subsequent frames in the input video stream on the  
basis of the output of a statistical classifier. 

3. The motion in the sequence is used to infer the 3D structure of the face and per-
form 3D instead of 2D recognition [40]. An interesting similar approach is based 
on the generalization of classic single view matching to multiple views [40, 41] 
and the integration of video into a time-varying representation called “identity  
surfaces”. 

4. Map the processing algorithm to extend the face template representation from 2D 
to 3D, where the third dimension is time. There are few examples of this approach 
including composite PCA, extended HMMs, parametric eigenspaces, multi-
dimensional classifiers, neural networks and other, video oriented, integrated  
approaches. 

5. Detect and identify facial expression either for face re-normalization or emotion 
understanding. 

3   Face Representations 

3.1   Face Representation from Single Images 

Holistic methods for face identification require a large (statistically significant) train-
ing set to build the base vectors determining the low dimension space. The generaliza-
tion capabilities of these methods have been tested to some extent but are still unclear. 
Up to now tests have been performed on databases with limited size. Even the FRGC 
database [93,94] only comprises few thousands subjects. Scaling up to larger data-
bases, including hundred of thousands individuals, even if possible, would make the 
problem very difficult to be numerically analyzed. Managing the identity by these 
face representations requires to be able to discriminate each single individual through 
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a single feature space, but this can be hardly guaranteed. The best performing face 
recognition methods, based on holistic processing, under real conditions reach an 
equal error rate (EER) around 1%. This corresponds to 100 wrongly classified sub-
jects over a database of 10,000 individuals or 1,000 over 100,000. The template size 
depends on the dimensionality of the representation space i.e. the number of basis 
vectors selected for the database representation. This value depends on the population 
of subjects, the variability of the face appearance (pose, expression, lighting, etc.), the 
number of classes and the discrimination power to be achieved. Therefore, coping 
with many variations in the face appearance, for example to deal with ageing, the size 
of the subspace and hence the representation can become indefinitely large. 

An advantage of EGM is the strong dependence on the input signal rather than on the 
population of subjects analyzed. Therefore, the subject’s identity is represented exclu-
sively from information related to data captured from each subject. The relation to the 
“rest of the world” is limited to the classification parameters which must be tuned for 
classification. The resulting EGM face template can be very compact as it is limited to 
the graph structure with the associated Gabor weights. This allows to cope with many 
variations, including ageing, without affecting the size of the representation. 

The drawbacks of EGM stem from the adaptation of the graph to the subject’s face. 
In order to be non-ambiguous it generally requires a good initialization. 

3.2   Face Representation from Video Streams 

An advantage of processing face video over single images stems from the possibility 
to define “dynamic templates”. This representations can exploit both physical and 
behavioral traits, thus enhancing the discrimination power of the classifier. The repre-
sentation of the subject’s identity can be arbitrarily rich at the cost of a large template 
size. 

Several approaches have been proposed to generalize classical face representations 
based on a single-view to multiple view representations. Examples of this kind can be 
found in [43,44] and [46-48] where face sequences are clustered using vector quanti-
zation into different views and subsequently fed to a statistical classifier. 

Recently, Krüger, Zhou and Chellappa [49-57] proposed the “video-to-video” 
paradigm, where the whole sequence of faces, acquired during a given time interval, 
is associated to a class (identity). This concept implies the temporal analysis of the 
video sequence with dynamical models (e.g., Bayesian models), and the “condensa-
tion” of the tracking and recognition problems. 

Other face recognition systems, based on the still-to-still and multiple stills-to-still 
paradigms, have been proposed [42,58,59]. However, none of them is able to effec-
tively handle the large variability of critical parameters, like pose, lighting, scale, face 
expression, some kind of forgery in the subject appearance (e.g., the beard). Typi-
cally, a face recognition system is specialized on a certain type of face view (e.g. 
frontal views), disregarding the images that do not correspond to such view. There-
fore, a powerful pose estimation algorithm is required. 

In order to improve the performance and robustness, multiple classifier systems 
(MCSs) have been recently proposed [60]. 

Achermann and Bunke [61] proposed the fusion of three recognizers based on frontal 
and profile faces. The outcome of each expert, represented by a score, i.e., a level of  
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confidence about the decision, is combined with simple fusion rules (majority voting, 
rank sum, Bayes’s combination rule). Lucas [43,44] used a n-tuple classifier for combin-
ing the decisions of experts based on sub-sampled images. 

Other interesting approaches are based on the extension of conventional, paramet-
ric classifiers to improve the “face space” representation. Among them are the  
extended HMMs [72], the Pseudo-Hyerarchical HMMs [91,92] and parametric eigen-
spaces [64], where the dynamic information in the video sequence is explicitely used 
to improve the face representation and, consequently, the discrimination power of the 
classifier. In [71] Lee et al. approximate face manifolds by a finite number of infinite 
extent subspaces and use temporal information to robustly estimate the operating part 
of the manifold. 

There are fewer methods that recognize from manifolds without the associated or-
dering of face images. Two algorithms worth mentioning are the Mutual Subspace 
Method (MSM) of Yamaguchi et al. [83,90] and the Kullback-Leibler divergence 
based method of Shakhnarovich et al. [78]. In MSM, infinite extent linear subspaces 
are used to compactly characterize face sets i.e. the manifolds that they lie on. Two 
sets are then compared by computing the first three principal angles between corre-
sponding principal component analysis (PCA) subspaces [48]. The major limitation of 
MSM is its simplistic modelling of manifolds of face variation. Their high nonlinear-
ity invalidates the assumption that data is well described by a linear subspace.  
Moreover, MSM does not have a meaningful probabilistic interpretation. 

The Kullback-Leibler divergence (KLD) based method [78] is founded on informa-
tion-theoretic grounds. In the proposed framework, it is assumed that i-th person’s 
face patterns are distributed according to pi(x). Recognition is then performed by 
finding pj(x) that best explains the set of input samples – quantified by the Kullback-
Leibler divergence. The key assumption in their work, that makes divergence compu-
tation tractable, is that face patterns are normally distributed. 

4   Conclusions 

The representation of faces strongly depends on the algorithm used to extract the fa-
cial features. Many techniques have been proposed to build face templates from still 
images and video. Even though holistic, subspace methods are the most widely used 
and studied, the template size can be very large if a large number of variation modes 
is required. On the other hand, the discrimination power of the algorithms strongly 
relies on the population adopted to perform the training of the subspace representation 
process. This, in turn, makes the subspace methods, strongly affected by the database. 
The same does not hold for other face representations, such as the elastic graph 
matching and other derived methods. On the other hand, while it can be relatively 
easy to adapt the representation to cope with the variability in the face appearance (for 
example due to ageing), the performances are greatly affected by the accuracy in the 
localization of the graph nodes on the face image. 

Dynamic face representations are the most rich and compact at the same time. They 
can provide remarkable performances and a high discrimination power, at the cost of a 
larger template size. From the results provided in the literature this can be the right  
avenue to be pursued to build a robust and yet flexible identity representation. 
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Abstract. A novel Discriminant Non-negative Matrix Factorization
(DNMF) method that uses projected gradients, is presented in this paper.
The proposed algorithm guarantees the algorithm’s convergence to a sta-
tionary point, contrary to the methods introduced so far, that only ensure
the non-increasing behavior of the algorithm’s cost function. The pro-
posed algorithm employs some extra modifications that make the method
more suitable for classification tasks. The usefulness of the proposed tech-
nique to the frontal face verification problem is also demonstrated.

1 Introduction

Over the past few years, the Non-negative Matrix Factorization (NMF) algo-
rithm and its alternatives have been widely used, especially in facial image char-
acterization and representation problems [1]. NMF aims at representing a facial
image as a linear combination of basis images. Unlike Principal Component Anal-
ysis (PCA), NMF does not allow negative elements in either the basis images or
the representation coefficients used in the linear combination of the basis images,
thus representing the facial image only by additions of weighted basis images.
The nonnegativity constraints introduced correspond better to the intuitive no-
tion of combining facial parts to create a complete facial image.

In order to enhance the sparsity of NMF, many methods have been proposed
for its further extension to supervised alternatives by incorporating discriminant
constraints in the decomposition, the so-called DNMF or Fisher-NMF (FNMF)
methods [1]. The intuitive motivation behind DNMF methods is to extract bases
that correspond to discriminant facial regions and contain more discriminative
information about them. A procedure similar to the one followed in the NMF
decomposition [2] regarding the calculation of the update rules for the weights
and the basis images was also used in the DNMF decomposition [1].

In this paper, a novel DNMF method is proposed that employs discriminant
constraints on the classification features and not on the representation coeffi-
cients. Projected gradient methods are used for the optimization procedure to
ensure that the limit point found will be a stationary point (similar methods
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have been applied to NMF [3]). Frontal face verification experiments were con-
ducted and it has been demonstrated that the proposed method outperforms
the other discriminant non-negative methods.

2 Discriminant Non-negative Matrix Factorization
Algorithms

2.1 Non-negative Matrix Factorization

An image scanned row-wise is used to form a vector x = [x1 . . . xF ]T for the
NMF algorithm. The basic idea behind NMF is to approximate the image x
by a linear combination of the basis images in Z ∈ �F×M

+ , whose coefficients
are the elements of h ∈ �M

+ such that x ≈ Zh. Using the conventional least
squares formulation, the approximation error x ≈ Zh is measured in terms of
L(x||Zh) � ||x−Zh||2 =

∑
i(xi − [Zh]i)2. Another way to measure the error of

the approximation is using the Kullback-Leibler (KL) divergence, KL(x||Zh) �∑
i(xi ln xi

[Zh]i
+ [Zh]i − xi) [2] which is the most common error measure for all

DNMF methods [1]. A limitation of KL-divergence is that it requires both xi and
[Zh]i to be strictly positive (i.e., neither negative nor zero values are allowed).

In order to apply the NMF algorithm, the matrix X ∈ �F×T
+ = [xij ] should

be constructed, where xij is the i-th element of the j-th image vector. In other
words, the j-th column of X is the facial image xj . NMF aims at finding two
matrices Z ∈ �F×M

+ = [zi,k] and H ∈ �M×T
+ = [hk,j ] such that:

X ≈ ZH. (1)

After the NMF decomposition, the facial image xj can be written as xj ≈ Zhj ,
where hj is the j-th column of H. Thus, the columns of the matrix Z can
be considered as basis images and the vector hj as the corresponding weight
vector. The vector hj can be also considered as the projection of xj in a lower
dimensional space.

The defined cost for the decomposition (1) is the sum of all KL divergences
for all images in the database:

D(X||ZH)=
∑

j

KL(xj ||Zhj)=
∑
i,j

(xi,j ln(
xi,j∑

k zi,khk,j
) +

∑
k

zi,khk,j − xi,j).

(2)
The NMF factorization is the outcome of the following optimization problem:

min
Z,H

D(X||ZH) subject to (3)

zi,k ≥ 0, hk,j ≥ 0,
∑

i

zi,j = 1, ∀j.

2.2 Discriminant Non-negative Matrix Factorization

In order to formulate the DNMF algorithm, let the matrix X that contains all
the facial images be organized as follows. The j-th column of the database X is
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the ρ-th image of the r-th image class. Thus, j =
∑r−1

i=1 Ni + ρ, where Ni is the
cardinality of the image class i. The r-th image class could consist of one person’s
facial images, for face recognition and verification problems. The vector hj that
corresponds to the j-th column of the matrix H, is the coefficient vector for the ρ-
th facial image of the r-th class and will be denoted as η

(r)
ρ = [η(r)

ρ,1 . . . η
(r)
ρ,M ]T . The

mean vector of the vectors η
(r)
ρ for the class r is denoted as µ(r) = [µ(r)

1 . . . µ
(r)
M ]T

and the mean of all classes as µ = [µ1 . . . µM ]T . Then, the within-class scatter
matrix for the coefficient vectors hj is defined as:

Sw =
K∑

r=1

Nr∑
ρ=1

(η(r)
ρ − µ(r))(η(r)

ρ − µ(r))T (4)

whereas the between-class scatter matrix is defined as:

Sb =
K∑

r=1

Nr(µ(r) − µ)(µ(r) − µ)T . (5)

The matrix Sw defines the scatter of the sample vector coefficients around their
class mean. The dispersion of samples that belong to the same class around
their corresponding mean should be as small as possible. A convenient measure
for the dispersion of the samples is the trace of Sw. The matrix Sb denotes the
between-class scatter matrix and defines the scatter of the mean vectors of all
classes around the global mean µ. Each class must be as far as possible from the
other classes. Therefore, the trace of Sb should be as large as possible.

To formulate the DNMF method [1], discriminant constraints have been incor-
porated in the NMF decomposition inspired by the minimization of the Fisher’s
criterion [1]. The DNMF cost function is given by:

Dd(X||ZH) = D(X||ZH) + γtr[Sw] − δtr[Sb] (6)

where γ and δ are non-negative constants. The update rules that guarantee a
non-increasing behavior of (6) for the weights hk,j and the bases zi,k, under
the constraints of (2), can be found in [1]. Unfortunately, the update rules only
guarantee a non-increasing behavior for (6) and do not ensure that the limit
point will be stationary.

3 Projected Gradient Methods for Discriminant
Non-negative Matrix Factorization

Let E = X − ZH be the error signal of the decomposition. The modified opti-
mization problem should minimize:

Dp(X||ZH) = ||E||2F + γtr[S̃w] − δtr[S̃b], (7)
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under non-negativity constraints, where ||.||F is the Frobenius norm. The within-
class scatter matrix S̃w and the between-scatter scatter matrix S̃b are defined
using the vectors x̃j = ZT xj and the definitions of the scatter matrices in (4)
and (5).

The minimization of (7) subject to nonnegative constraints yields the new
discriminant nonnegative decomposition. The new optimization problem is the
minimization of (7) subject to non-negative constraints for the weights matrix H
and the bases matrix Z. This optimization problem will be solved using projected
gradients in order to guarantee that the limit point will be stationary. In order
to find the limit point, two functions are defined:

fZ(H) = Dp(X||ZH) and fH(Z) = Dp(X||ZH) (8)

by keeping Z and H fixed, respectively.
The projected gradient method used in this paper, successively optimizes two

subproblems [3]:
min
Z

fH(Z) subject to, zi,k ≥ 0, (9)

and
min
H

fZ(H) subject to, hk,j ≥ 0. (10)

The method requires the calculation of the first and the second order gradients
of the two functions in (8):

∇fZ(H) = ZT (ZH − X)
∇2fZ(H) = ZT Z
∇fH(Z) = (ZH − X)HT + γ∇tr[S̃w] − δ∇tr[S̃b]
∇2fH(Z) = HHT + γ∇2tr[S̃w] − δ∇2tr[S̃b].

(11)

The detailed calculations of ∇tr[S̃w], ∇tr[S̃b], ∇2tr[S̃w] and ∇2tr[S̃b] can be
found in Appendix A. The projected gradient DNMF method is an iterative
method that is comprised of two main phases. These two phases are iteratively
repeated until the ending condition is met or the number of iterations exceeds
a given number. In the first phase, an iterative procedure is followed for the op-
timization of (9), while in the second phase, a similar procedure is followed for
the optimization of (10). In the beginning, the bases matrix Z(1) and the weight
matrix H(1) are initialized either randomly or by using structured initialization
[4], in such a way that their entries are nonnegative. The regularization param-
eters γ and δ that are used to balance the trade-off between accuracy of the
approximation and discriminant decomposition of the computed solution and
their selection is typically problem dependent.

3.1 Solving the Subproblem (9)

Consider the subproblem of optimizing with respect to Z, while keeping the
matrix H constant. The optimization is an iterative procedure that is repeated
until Z(t) becomes a stationary point of (9). In every iteration, a proper step
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size at is required to update the matrix Z(t). When a proper update is found,
the stationarity condition is checked and, if met, the procedure stops.

3.1.1 Update the Matrix Z
For a number of iterations t = 1, 2, . . . the following updates are performed [3]:

Z(t+1) = P
[
Z(t) − at∇fH(Z(t))

]
(12)

where at = βgt and gt is the first non-negative integer such that:

fH(Z(t+1)) − fH(Z(t)) ≤ σ
〈
∇fH(Z(t)),Z(t+1) − Z(t)

〉
. (13)

The projection rule P [.] = max[., 0] refers to the elements of the matrix and
guarantees that the update will not contain any negative entries. The operator
〈., .〉 is the inner product between matrices defined as:

〈A,B〉 =
∑

i

∑
j

ai,jbi,j (14)

where [A]i,j = ai,j and [B]i,j = bi,j . The condition (13) ensures the sufficient
decrease of the fH(Z) function values per iteration. Since the function fH is
quadratic in terms of Z, the inequality (13) can be reformulated as:

(1−σ)
〈
∇fH(Z(t)),Z(t+1) − Z(t)

〉
+

1
2

〈
Z(t+1) − Z(t),∇2fH(Z(t+1))

〉
≤ 0 (15)

which is the actual condition checked.
The search of a proper value for at is the most time consuming procedure,

thus, as few iteration steps as possible are desired. Several procedures have been
proposed for the selection and update of the at values [5]. The Algorithm 4 in
[3] has been used in our experiments and β, σ are chosen to be equal to 0.1 and
0.01 (0 < β < 1, 0 < σ < 1), respectively. The choice of σ has been thoroughly
studied in [3,5]. During experiments it was observed that a smaller value of β
reduces more aggressively the step size, but it may also result in a step size
that is too small. The search for at is repeated until the point Z(t) becomes a
stationary point.

3.1.2 Check of Stationarity
In this step it is checked whether or not in the limit point the first order deriva-
tives are close to zero (stationarity condition). A commonly used condition to
check the stationarity of a point is the following [5]:

||∇P fH(Z(t))||F ≤ εZ||∇fH(Z(1))||F (16)

where ∇P fH(Z) is the projected gradient for the constraint optimization prob-
lem defined as:

[∇P fH(Z)]i,k =
{

[∇fH(Z)]i,k if zi,k > 0
min(0, [∇fH(Z)]i,k) zi,k = 0.

(17)
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and 0 < εZ < 1 is the predefined stopping tolerance. A very low εZ (i.e., εZ ≈ 0)
leads to a termination after a large number of iterations. On the other hand, a
tolerance close to one will result in a premature iteration termination.

3.2 Solving the Subproblem (10)

A similar procedure should be followed in order to find a stationary point for
the subproblem (10) while keeping fixed the matrix Z and optimizing in respect
of H. A value for at is iteratively sought and the weight matrix is updated
according to:

H(t+1) = P
[
H(t) − at∇fZ(H(t))

]
(18)

until the function fZ(H) value is sufficient decreased and the following inequality
holds 〈a, b〉:

(1 − σ)
〈
∇fZ(H(t)),H(t+1) − H(t)

〉
+

1
2

〈
H(t+1) − H(t),∇2fZ(H(t+1))

〉
≤ 0.

(19)
This procedure is repeated until the limit point H(t) is stationary. The station-
arity is checked using a similar criterion to (16), i.e.:

||∇P fZ(H(t))||F ≤ εH||∇fZ(H(1))||F (20)

where εH is the predefined stopping tolerance for this subproblem.

3.3 Convergence Rule

The procedure followed for the minimization of the two subproblems, in Sections
3.1 and 3.2, is iteratively followed until the global convergence rule is met:

||∇f(H(t))||F + ||∇f(Z(t))||F ≤ ε
(
||∇f(H(1))||F + ||∇f(Z(1))||F

)
(21)

which checks the stationarity of the solution pair H(t),Z(t).

4 Experimental Results

The proposed DNMF method will be denoted as Projected Gradient DNMF
(PGDNMF) from now onwards. The experiments were conducted in the
XM2VTS database using the protocol described in [8]. The images were aligned
semi-automatically according to the eyes position of each facial image using the
eye coordinates. The facial images were down-scaled to a resolution of 64 × 64
pixels. Histogram equalization was used for the normalization of the facial image
luminance.

The XM2VTS database contains 295 subjects, 4 recording sessions and two
shots (repetitions) per recording session. It provides two experimental setups
namely, Configuration I and Configuration II [8]. Each configuration is divided
into three different sets: the training set, the evaluation set and the test set.
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Fig. 1. EER for Configuration I of XM2VTS versus dimensionality

The training set is used to create client and impostor models for each person.
The evaluation set is used to learn the verification decision thresholds. In case of
multimodal systems, the evaluation set is also used to train the fusion manager
[8]. For both configurations the training set has 200 clients, 25 evaluation im-
postors and 70 test impostors. The two configurations differ in the distribution
of client training and client evaluation data. For additional details concerning
the XM2VTS database an interested reader can refer to [8].

The experimental procedure followed was the one also used in [1]. For compar-
ison reasons the same methodology using the Configuration I of the XM2VTS
database was used. The performance of the algorithms is quoted by the Equal
Error Rate (EER) which is the scalar figure of merit that is often used to judge
the performance of a verification algorithm. An interested reader may refer to
[1,8] for more details concerning the XM2VTS protocol and the experimental
procedure followed. In Figure 1, the verification results are shown for the var-
ious tested approaches, NMF [2], LNMF [9], DNMF [1], Class Specific DNMF
[1], PCA [10], PCA plus LDA [11] and the proposed PGDNMF. EER is ploted
versus the dimensionality of the new lower dimension space. As can be seen, the
proposed PGDNMF algorithm outperforms (giving a best EER ≈ 2.0%) all the
other part-based approaches and PCA. The best performance of LDA has been
1.7% which very close to the best performance of PGDNMF.

5 Conclusions

A novel DNMF method has been proposed based on projected gradients. The in-
corporated discriminant constraints focus on the actual features used for
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classification and not on the weight vectors of the decomposition. Moreover,
we have applied projected gradients in order to assure that the limit point is
stationary. The proposed technique has been applied in supervised facial feature
extraction for face verification, where it was shown that it outperforms several
others subspace methods.
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A Calculation of ∇tr [S̃w], ∇tr [S̃b], ∇2tr [S̃w] and ∇2tr [S̃b]

Let m̃(r) and m̃ be the mean of the projected vectors x̃ for the r-th class and
the total mean vector, respectively. The gradient

[
∇tr[S̃w]

]
i,k

= ∂tr[S̃w]
∂zi,k

is given

by:

∂tr[S̃w]
∂zi,k

=
∂
∑

k

∑K
r=1

∑
x̃j∈Ur

(x̃k,j − m̃
(r)
k )2

∂zi,k
=

K∑
r=1

∑
x̃j∈Ur

∂(x̃k,j − m̃
(r)
i )2

∂zi,k

= 2
K∑

r=1

∑
x̃j∈Ur

(xi,j − m
(r)
i )(x̃k,j − m̃

(r)
k ) (22)

since x̃k,j = [x̃j ]k = zT
k xj and ∂x̃j,k

∂zi,k
= xi,j .

The
[
∇tr[S̃b]

]
i,k

= ∂tr[S̃b]
∂zi,k

is given by:

∂tr[S̃b]
∂zi,k

=
∂
∑

k

∑K
r=1(m̃

(r)
k,j − m̃k)2

∂zi,k
=

K∑
r=1

∂(m̃(r)
k,j − m̃i)2

∂zi,k

= 2
K∑

r=1

(m(r)
i,j − mi)(m̃

(r)
k,j − m̃k). (23)

For the second partial derivative of tr[S̃w] and of tr[S̃b],
∂2tr[S̃w]
∂zi,k∂zi,l

= 0 and
∂2tr[S̃b]
∂zi,k∂zi,l

= 0 for l �= k, while for l = k:

∂2tr[S̃w]
∂2zi,k

= 2
K∑

r=1

∑
xj∈Ur

(xi,j − m
(r)
i )2 and

∂2tr[S̃b]
∂2zi,k

= 2
K∑

r=1

(m(r)
i,j − mi)2, (24)

where m(r) and m are the mean of the vectors x for the r-th class and the
total mean vector, respectively. Using the above calculations the calculation of
∇tr[S̃w], ∇tr[S̃b], ∇2tr[S̃w] and ∇2tr[S̃b] is now straightforward.
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Abstract. In this work, the discrimination capabilities of speech cepstra for text 
and speaker related information are investigated. For this purpose, Bhattacharya 
distance metric is used as the measure of discrimination. The scope of the study 
covers static and dynamic cepstra derived using the linear prediction analysis 
(LPCC) as well as mel-frequency analysis (MFCC). The investigations also  
include the assessment of the linear prediction-based mel-frequency cepstral 
coefficients (LP-MFCC) as an alternative speech feature type. It is shown ex-
perimentally that whilst contaminations in speech unfavourably affect the per-
formance of all types of cepstra, the effects are more severe in the case of 
MFCC. Furthermore, it is shown that with a combination of static and dy- 
namic features, LP-based mel-frequency cepstra (LP-MFCC) exhibit the best 
discrimination capabilities in almost all experimental cases. 

1   Introduction 

Cepstra are the most commonly used features in speech related recognition tasks [1-4]. 
By definition, cepstrum of a given signal is obtained using homomorphic filtering 
which converts convolved source and filter impulse responses to linear summations 
[5]. An approach to extracting cepstral features from speech is that of first computing 
the speech linear prediction coefficients and then converting these to cepstral coeffi-
cients. Feature parameters obtained in this way are called linear prediction-based  
cepstral coefficients (LPCC) [5]. A second widely used method involves applying a 
mel-scale filter-bank function to the speech spectrum. The resultant feature parameters 
are referred to as mel-scale cepstral coefficients (MFCC) [3]. There are other types of 
cepstra that can be obtained through some variations of, or additional processing in, the 
above approaches. Examples of these are perceptual linear prediction coefficients 
(PLP) and linear filter bank cepstral coefficients (LFCC) [5]. Since LPCC and MFCC 
are the most widely used speech features, it is natural to focus the work on these. The 
indications from our initial study have been that each of these two feature types may 
possess certain superior discriminative characteristics, depending on the experimental 
conditions and the attribute considered. Therefore, in an attempt to capture the bene-
fits of each of these two commonly used classes of cepstra in one parametric repre-
sentation, linear prediction-based, mel-frequency cepstral coefficients (LP-MFCC) are 
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also considered in this study as an alternative feature type. The approach to extracting 
this class of speech features is given later in this paper. It should be pointed out that, 
whilst the idea behind LP-MFCC has been presented in some other studies [6-7], 
there is very limited information in the literature about the discrimination capabilities 
of this feature type [6].  

The previous studies on the usefulness of various types of cepstra have been con-
fined to individual applications. Examples are speaker recognition [1-2], speech rec-
ognition [3] and emotion recognition [4]. There have also been investigations into the 
usefulness of combining other features with cepstra for improving the performance, 
but again in a particular application only [8]. An important feature lacking in these 
studies is that of identifying the influence of the underlying experimental conditions 
on the outcomes. For instance, it is not known how variation in gender can affect the 
relative performance of different types of cepstra in text-dependent speaker recogni-
tion. Additionally, studies carried out to date have not been based on the same ex-
perimental setup or conditions. As a result, to date, the literature lacks information on 
the relative discrimination capabilities of different types of cepstra, in terms of indi-
vidual classes of information contained in speech.  

In general, the discrimination of any two sets of cepstral data can be achieved by 
assessing the divergence or distance between their distributions. Assuming that the 
distribution of such data is Gaussian, there are various metrics that can be used for 
this purpose. Although the underlying distribution of multidimensional cepstral data 
deviates from the Gaussian assumption, many speech applications such as speaker 
tracking and speaker segmentation use the Gaussian assumption of distribution for 
speech cepstral features. This assumption is reasonable as speech cepstra have uni-
modal distributions resembling Gaussians [5].  Additionally, when comparing the 
distributions of two sets of cepstral data directly using Gaussian-based measures, the 
exact Gaussian assumption of the distributions will not have a significant effect on  
the outcome as this is applied to both datasets.  Examples of Gaussian-based com-
parative measures are Euclidean distance, Mahalanobis distance, and various other 
statistical measures [9]. Some of these measures show insensitivity towards particular 
data statistics, while some fail under certain conditions. For example, if the Euclidean 
distance between the means of two Gaussian distributions is used as a distance meas-
ure, then the covariance information is totally ignored. On the other hand, the F- Ratio 
which is a useful metric in terms of variance information has the drawback of being 
insensitive to mean statistics of data [5, 10, 11]. Amongst various measures, it is re-
ported that Bhattacharya distance metric is well suited to the classification purpose 
[12] which is the main task in this study. As indicated in the study of speaker tracking 
in [9], for certain other purposes, it may be that the use of a different type of metric  
is advantageous. However, the nature of task in the present study together with the 
characteristics of Bhattacharya measure provides a strong justification for the de-
ployment of this metric. The suitability of Bhattacharya distance is further discussed 
in Section 2. 

The rest of this paper is organised as follows. Section 2 gives an overview of Bhat-
tacharya distance as a discriminative measure. Section 3 details the experimental data 
and procedures together with various configurations used for the purpose of investiga-
tions. The experimental results together with the discussions of these are presented in 
Section 4, and overall conclusions are given in Section 5. 
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2   Bhattacharya Distance 

Bhattacharya distance for normal distributions is a very convenient measure for 
evaluating the class-separation capability [12]. If the multivariate data from two 
classes of A and B are normally distributed with statistics ( )AANA Σµ ,∈   and 

( )BBNB Σµ ,∈  , where ( )iiN Σµ ,   are mean and covariance parameters for data I, 

then the metric is given as [12] 
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where T is the transpose operation. The first term in this metric measures the distance 
between Aµ  and Bµ  normalised by the average covariance matrix, whilst the second 

term measures the distance due to covariance differences in data classes A and B. 
Hence, the first term gives class separation capability due to mean statistics from the 
two data sets and second term gives the separation capability due to covariance struc-
tures. Metric M itself gives the overall class separation capability. 

The divergence between Gaussian distributions of the two data sets can act as  
another suitable distance measure [12]. However, a main drawback of using the di-
vergence measure is due to its weak association with the Bayes error for the classifi-
cation purposes [12]. The formulation of the divergence measure is based on various 
approximations in obtaining discrimination criterion for the two class problem. Hence 
in this work, Bhattacharya distance is adopted. 

3   Experimental Procedures  

3.1   Speech Data 

For the purpose of experiments, TIMIT database is adopted. The advantage of using 
this database is that it is phonetically rich, and is recorded under clean background 
conditions. This reduces variability due to background environments and ensures that 
Gaussian statistics of cepstra are not pre-contaminated by noise. This database is also 
useful for studying the effects of the addition of noise to speech in a controlled man-
ner. The database consists of speech material from 192 females and 438 males, each 
with 10 utterances. In this work, material from 192 males and 192 females is used 
with ‘sa1’ and ‘sx1’ utterances. 

3.2   Feature Parameter Representation 

The extraction of cepstral parameters in this study is based on first pre-emphasising 
the input speech data using a first-order digital filter and then segmenting it into 20 
ms frames at intervals of 10 ms using a Hamming window. A voice activity detection 
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algorithm is then used to discard frames containing silence only. For each frame, 16 
LPCC are obtained via a linear prediction analysis. To extract MFCC, the speech 
spectrum for each frame is weighted by a mel-scale filter bank. This filter bank con-
sists of 26 triangular filters for the considered sampling frequency of 16 kHz. The 
discrete cosine transformation of the log magnitude outputs of these filters gives 16 
MFCC for that speech frame. The extraction of LP-MFCC is based on first computing 
16 LP coefficients for each frame. The above-stated perceptual processing is then 
deployed to obtain 16 mel-frequency coefficients from the LP spectrum. For each 
type of cepstra, a polynomial fit method is used to obtain 16 delta coefficients [5]. 

3.3   Experimental Configurations 

Tests are carried out separately using various configurations as follows. 

1. In this configuration LPCC, MFCC and LP-MFCC are assessed for their text-based 
discrimination capabilities under clean conditions. For each speaker, the Bhatta-
charya distance between Gaussian distributions of cepstra obtained using ‘sa1’ and 
‘sx1’ utterances is computed. The tests are carried out separately for each gender, 
using static coefficients with and without delta coefficients. The mean of the Bhat-
tacharya distance is estimated with 95 % confidence interval in each case. 

2. Here, LPCC, MFCC and LP-MFCC are assessed for their speaker separation capa-
bilities under clean conditions. The Bhattacharya distance is applied to the Gaus-
sian distributions of cepstra obtained from pairs of speakers speaking the ‘sa1’  
utterance. The tests are carried out separately within each gender group as well as 
across the genders, using static coefficients with and without delta coefficients. 
The mean of Bhattacharya distance in each case is estimated with 95 % confidence 
interval.  

3. In this configuration, the tests are the same as in 1, but here the speech data is con-
taminated with Gaussian white noise. To examine the effects of contamination 
level, a range of signal-to-noise ratios (SNR) are used. These are 20 dB, 15 dB and 
10 dB. 

4. The tests are the same as in 2 but the speech data is contaminated with various 
levels of Gaussian white noise, producing different signal to noise ratios as detailed 
in 3. 

4   Results and Discussions 

The required keys for the interpretation of all the results presented below are as follows. 
“M:” - within male speakers, “F:” - within female speakers, “M/F:” - between 

Male and female speakers. Vertical lines at the top of each bar represent the 95 % 
confidence interval values. 

4.1   Text Separation Capabilities of Cepstra for Clean Speech 

According to the results in Figure 1, the static MFCC and LPCC have almost the 
same capabilities for the separation of textual information. The results also show the  
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advantages offered by using delta coefficients. Figure 1 further indicates that the per-
formance of MFCC+delta is closely followed by that of LPCC+delta. This result is 
consistent with the pervious results obtained in speech recognition experiments [3]. It 
is interesting to note that LP-MFCC are noticeably better than LPCC and MFCC. This 
difference in performance appears to become significant when delta parameters are 
appended to the static features. Additionally, it is seen that, with or without using 
delta coefficients, the textual separation capabilities in the case of female speakers are 
always below those for male speakers. 
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Fig. 1. Text separation capabilities of cepstra: experimental results based on configuration 1 

4.2   Speaker Separation Capabilities of Cepstra for Clean Speech 

It can be seen that, with clean speech and the same gender speakers, LPCC offer only 
slightly better speaker separation capabilities than MFCC. However, a more notice-
able difference in performance in favour of LPCC is observed for the combination of 
static and dynamic features. In the case of cross-gender tests, however, MFCC exhibit 
better discrimination capabilities than LPCC. This appears to be the case for both 
static features, as well as combined static-dynamic features. In terms of static features 
only, the capabilities offered by LP-MFCC appear to be between those of LPCC and 
MFCC, for both within gender and cross-gender tests. However, it should be noted 
that the performance of all three feature types improves considerably by appending 
delta parameters to static coefficients. In this case, the best performance is offered  
by LP-MFCC. Another interesting aspect of the results in Figure 2 is that, for every 
feature type, the discrimination achievable for male speakers is better than that for 
female speakers. 
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Fig. 2. Speaker separation capabilities of cepstra for clean speech: results of the experiments 
based on configuration 2 

4.3   Text Separation Capabilities of Cepstra for Noisy Speech 

As seen in Figure 3, the textual separation capabilities for both genders deteriorate 
with decreasing SNR. It is also noted that the adverse effects of the additive noise are 
more considerable in the case of MFCC features. This imbalance in effects appears to 
even reverse the relative performance of LPCC and MFCC in favour of the former 
when a combination of static and dynamic features is used. As a result, for both gen-
ders and all levels of contamination, LPCC features exhibit better discrimination 
capabilities than MFCC. As observed in Figure 3, although the LP-MFCC perform-
ance is also affected by noise, the effectiveness of this feature type is consistently 
better than that of LPCC and MFCC. 

4.4   Speaker Separation Capabilities of Cepstra for Noisy Speech 

The results in Figure 4 show the effects of additive noise on speaker separation capa-
bilities of LPCC, MFCC and LP-MFCC. It can be observed that these results are 
consistent with those in Figure 3. That is, as discussed above, the additive noise has 
more noticeable adverse effects on the results for MFCC features to the extent that 
better performance is obtained with LPCC in cross-gender tests. This relative per-
formance, as observed, is regardless of using static features or combined static-
dynamic features. It is also noted that, the decrease in SNR reduces the performance 
of the two categories of features at different rates. Therefore, the gap in the relative 
performance continuously increases (with noise level) in favour of LPC features. The 
results also show that LP-MFCC features exhibit a better level of robustness against 
noise than MFCC. It is observed that in cross-gender tests in the presence of noise,  
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Fig. 3. Text separation capabilities of cepstra under Noisy Conditions: results of the experi-
ments based on configuration 3 
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Fig. 4. Speaker separation capabilities under Noisy Conditions: results of the experiments based 
on configuration 4 
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LP-MFCC perform better than the other two feature types. In single-gender experi-
ments based on static features only, comparable performance is observed for LPCC 
and LP-MFCC.  

In experiments based on static+delta features, LP-MFCC continues to offer better 
overall effectiveness for almost all noise levels. The only exception is the experiments 
with male speakers where comparable performance is obtained with LPCC. 

5   Conclusions 

The discrimination capabilities of cepstra in terms of text and speaker identity have 
been investigated. By making the study independent of any particular application, 
attempts have been made to avoid the influence of application-specific conditions and 
parameters on the outcomes. For the purpose of this study, two commonly used types 
of cepstra (LPCC and MFCC) together with LP-based mel-frequency cepstra (LP-
MFCC) have been investigated. The evaluations of discrimination capabilities have 
been conducted using the Bhattacharya distance. Based on the experimental results, it 
is concluded that the information discrimination capabilities in all categories of cep-
stra show dependence on the speaker gender and also on the test conditions.  

In terms of speaker discrimination, LPCC appear to exhibit marginally better per-
formance when the speakers are of the same gender. In the case of cross-gender 
speaker discrimination, the experimental results have revealed that the MFCC features 
provide better performance than the LPCC features. The experimental results have 
also shown that, as expected, the speech contamination due to white noise affects the 
performance of all types of cepstra. It is, however, observed that the effect is more 
significant in the case of MFCC.   

The experiments conducted suggest that some useful discriminative characteristics 
of LPCC and MFCC are captured in LP-MFCC. This is evident by the fact that, in 
every case, LP-MFCC are found to either offer the best performance or to be almost 
as effective as the best performer.    

In general, the use of delta coefficients in addition to static parameters has been 
found to considerably improve the separation capabilities of cepstra. In this case, the 
use of LP-MFCC appears to be advantageous as it provides the best performance in 
almost all cases. Although the study has been confined to cepstra, the approach 
adopted can also be used for assessing the capabilities of other types of speech fea-
tures. Moreover, it provides the possibility of evaluating the relative suitability  
of different speech feature candidates for a specific task prior to building the whole 
application. 
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Abstract. This paper proposes a novel method for speaker identifica-
tion based on both speech utterances and their transcribed text. The
transcribed text of each speaker’s utterance is processed by the proba-
bilistic latent semantic indexing (PLSI) that offers a powerful means to
model each speaker’s vocabulary employing a number of hidden topics,
which are closely related to his/her identity, function, or expertise. Mel-
frequency cepstral coefficients (MFCCs) are extracted from each speech
frame and their dynamic range is quantized to a number of predefined
bins in order to compute MFCC local histograms for each speech ut-
terance, which is time-aligned with the transcribed text. Two identity
scores are independently computed by the PLSI applied to the text and
the nearest neighbor classifier applied to the local MFCC histograms. It
is demonstrated that a convex combination of the two scores is more ac-
curate than the individual scores on speaker identification experiments
conducted on broadcast news of the RT-03 MDE Training Data Text
and Annotations corpus distributed by the Linguistic Data Consortium.

Keywords: multimodal speaker identification, text, speech, probabilis-
tic latent semantic indexing, Mel-frequency cepstral coefficients, nearest
neighbor classifier, convex combination.

1 Introduction

Speaker identification systems resort mainly to speech processing. Undoubtedly,
speech is probably the most natural modality to identify a speaker [1]. Histor-
ically in speaker recognition technology R&D, effort has been devoted to char-
acterizing the statistics of a speaker’s amplitude spectrum. Although, dynamic
information (e.g., difference spectra) has been taken into consideration as well as
static information, the focus has been on spectral rather than temporal charac-
terization. The usage of certain words and phrases [2] as well as intonation, stress,
and timing [3], constitute longer term speech patterns, which define “familiar-
speaker” differences, a promising but radical departure from mainstream speaker
recognition technology.

In this paper, we explore text that is rarely combined with speech for bio-
metric person identification. More specifically, text refers to the time-aligned
transcribed speech that appears as rich annotation of speakers’ utterances. The

B. Schouten et al. (Eds.): BIOID 2008, LNCS 5372, pp. 100–109, 2008.
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annotation process could be an automatic, a semi-automatic, or a manual task
as is frequently the case. In the proposed algorithm, we assume that we know
the start time and end time of each word in a speaker’s utterance as well as its
speech to text transcription. Although there are a few past works where text was
exploited for speaker identification, e.g. the idiolectal differences as quantified by
N -gram language models [2], to the best of authors’ knowledge no multimodal
approach that exploits speech and text has been proposed so far.

The motivation for building multimodal biometric systems is that systems
based on a single-modality, e.g. speech, are far from being error-free, especially
under noisy operating conditions. The use of complementary modalities, such
as visual speech, speaker’s face, yields a more reliable identification accuracy.
However, the additional modalities may also be unstable due to dependence on
recording conditions, such as changes in pose and lighting conditions. Text and
language models, if available, do not suffer from such shortcomings.

The transcribed text of each speaker’s utterance is processed by the prob-
abilistic latent semantic indexing (PLSI)[4] that offers a powerful means to
model each speaker’s vocabulary employing a number of hidden topics, which
are closely related to his/her identity, function, or expertise. Mel-frequency cep-
stral coefficients (MFCCs) are extracted from each speech frame and their dy-
namic range is quantized to a number of predefined bins in order to compute
MFCC local histograms for each speech utterance, that is time-aligned with the
transcribed text. Two identity scores are independently computed by the PLSI
applied first to the text and the nearest neighbor classifier applied next to the lo-
cal MFCC histograms. It is demonstrated that a late fusion of the two scores by
a convex combination is more accurate than the individual scores on closed-set
speaker identification experiments conducted on broadcast news of the RT-03
MDE Training Data Text and Annotations corpus distributed by the Linguistic
Data Consortium [6].

The outline of the paper is as follows. In Section 2, a novel method to combine
audio and text data in a single representation array is described. Speaker iden-
tification algorithms based on either text or speech are described in Section 3.
Experimental results are demonstrated in Section 4, and conclusions are drawn
in Section 5.

2 Biometric Data Representation

In this Section, we propose a novel representation of speaker biometric data that
will be used as an input to the identification algorithms to be described in the
next section. As far as text data are concerned, two sets are identified, namely
the set of speaker identities and the domain vocabulary. The latter is the union
of all vocabularies used by the speakers. A closed set of speaker identities S of
cardinality n is assumed, i.e.

S = {s1, s2, . . . , sn} . (1)
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Let W be the domain vocabulary of cardinality m:

W = {w1, w2, . . . , wm} . (2)

A two dimensional matrix K whose rows refer to spoken words in W and its
columns refer to the speaker identities in S is created. Its (i, j)-th element, ki,j ,
is equal to the number of times the word wi is uttered by the speaker sj :

K =

⎡⎢⎢⎢⎣
k1,1 k1,2 . . . k1,n

k2,1 k2,2 . . . k2,n

...
...

. . .
...

km,1 km,2 . . . km,n

⎤⎥⎥⎥⎦ . (3)

It is obvious that the “word-by-speaker” matrix K plays the same role with the
“term-by-document” matrix in PLSI. The only difference is that the columns
are associated to speakers and not to documents. Such a representation can be
modeled in terms to latent variables, which refer to topics. The models can easily
be derived by applying PLSI to K. To minimize the vocabulary size, one may
apply stemming or some sort of word clustering. Function words (e.g. articles,
propositions) are frequently rejected as well.

Next, time-aligned audio information is associated with each element of the
“word-by-speaker” matrix. This is done by extracting the MFCCs [5] for each
frame within the speech utterance of each spoken word. Since, the same word
might have been spoken by the same speaker more than once, we should aggre-
gate the MFCC information from multiple instances of the same word. This is
done as follows.

1. For each frame within each word utterance, extract 13 MFCCs. That is, 13
MFCC sets of variable length are obtained depending on the duration of
each word utterance.

2. Create the histogram of each MFCC by splitting its dynamic range into b
bins. Since we do not know a priori the dynamic range of each MFCC, we
need to determine the minimum and maximum value for each MFCC.

3. Finally, add the MFCC histograms for all word utterances spoken by each
speaker.

Accordingly, we obtain a 13 × b matrix, where b is the number of histogram
bins. Let the maximum and minimum value of each MFCC be maxc and minc,
respectively, c = 1, 2, . . . , 13. The size of each bin δbc is given by

δbc =
maxc −minc

b
, c = 1, 2, . . . , 13. (4)

Let

Ai,j =

⎡⎢⎢⎢⎣
α1,1;i,j α1,2;i,j . . . α1,b;i,j
α2,1;i,j α2,2;i,j . . . α2,b;i,j

...
...

. . .
...

α13,1;i,j α13,2;i,j . . . α13,b;i,j

⎤⎥⎥⎥⎦ (5)
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be the 13 × b matrix whose element αc,t;i,j denotes how many times the c-th
MFCC is fallen into the t-th bin of the histogram for the i-th word spoken by
the j-th speaker. It is proposed each element of the “word-by-speaker” matrix
to index the pair (ki,j ,Ai,j). If ki,j = 0, then Ai,j = 0. Consequently, Eq. (3) is
rewritten as

K =

⎡⎢⎢⎢⎣
(k1,1,A1,1) (k1,2,A1,2) . . . (k1,n,A1,n)
(k2,1,A2,1) (k2,2,A2,2) . . . (k2,n,A2,n)

...
...

. . .
...

(km,1,Am,1) (km,2,Am,2) . . . (km,n,Am,n)

⎤⎥⎥⎥⎦ . (6)

The main advantage of the proposed multimodal biometric representation is
that it can easily be updated when new data arrive. When a new word or a new
speaker is added (e.g. during training), one has to add a new row or column
in K, respectively. Another main characteristic of the data representation is
that contains only integers. This has a positive impact in data storage, since in
most cases, an unsigned integer needs 32 bits, whereas a double number needs
64bits [6].

3 Multimodal Speaker Identification

Having defined the biometric data representation, let us assume that the training
data form the composite matrix K as in Eq. (6). Let the test data contain
instances of speech and text information from a speaker sx ∈ S whose identity
is to be determined. The test data are represented by the following composite
vector kx, i.e.

kx =

⎡⎢⎢⎢⎣
(k1,x,A1,x)
(k2,x,A2,x)

...
(km,x,Am,x)

⎤⎥⎥⎥⎦ . (7)

The composite matrix K and the composite vector kx must have the same
number of rows, thus the domain vocabulary should be the same. By denoting
the vocabulary that is used by the test speaker as Wx, we could use the union
of both training and test vocabulary:

Wall = W ∪ Wx . (8)

Accordingly, new rows might be inserted to both K and kx and be rearranged
so that each row is associated to the same word in the domain vocabulary. The
next step is to combine the training and test data in one matrix as follows:

Kall =
[
K | kx

]
. (9)

Having gathered all the data in the unified structure, Kall, first PLSI is applied
to its ki,j entries in order to reveal a distribution of topics related to the textual
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content uttered by each speaker in S. In the following, the topics are defined by
the latent discrete random variable z that admits q values in the set

Z = {z1, z2, . . . , zq} (10)

as in [4]. Let us denote by P (s, z) the joint probability that speaker s speaks
about topic z. Obviously,

P (s, z) = P (s|z) P (z), (11)

where P (s|z) is the conditional probability of a speaker given a topic and P (z) is
the probability of topic. By applying the PLSI algorithm, one can estimate the
constituents of Eq. (11). The expectation step of the Expectation-Maximization
algorithm (EM) in PLSI yields

P (z|w, s) =
P (z) P (w|z) P (s|z)∑

z′
P (z′) P (w|z′) P (s|z′) . (12)

The maximization step is described by the following set of equations:

P (w|z) =

∑
s

kw,s P (z|w, s)∑
w′,s

kw′,s P (z|w′, s)
(13)

P (s|z) =

∑
w

kw,s P (z|w, s)∑
w,s′

kw,s′ P (z|w, s′)
(14)

P (z) =
1
R

∑
w,s

kw,s P (z|w, s) (15)

where R ≡ ∑
w,s

kw,s. The number of iterations of the EM algorithm can be preset

by the user or can be determined by monitoring a convergence criterion, such as
to observe insignificant changes of the model probabilities of PLSI. A random
initialization of the model probabilities is frequently applied. The number of
topics is also predetermined by the user.

Let the joint probability speaker sj ∈ S from the training set speaks about
topic zt be

Pj,t = P (sj , zt), 1 ≤ j ≤ n, 1 ≤ t ≤ q. (16)

Similarly, let Px,t = P (sx, zt) be the same joint probability for the test speaker
sx. Then, we can define a distance between the speakers sx and sj based on text
information as

dPLSI(x, j) =
1
q

q∑
t=1

|Pj,t − Px,t| j = 1, 2, . . . , n (17)

or

dPLSI(x, j) =
1
q

q∑
t=1

Pj,t log
Pj,t

Px,t
j = 1, 2, . . . , n. (18)
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Eq. (17) defines an L1-norm, whereas Eq. (18) is the KullbackLeibler divergence
of the joint probabilities of speakers and topics. By applying either distance, we
can obtain a vector containing all distances between the test speaker sx and all
speakers sj ∈ S:

DPLSI(x) = [dPLSI(x, 1) dPLSI(x, 2) . . . dPLSI(x, n)]T (19)

Let us now consider the definition of distances between speakers when local
histograms of MFCCs are employed. First, we create the set of word indices Lj

for each column of K (i.e., the training set):

Lj = {i | ki,j > 0} , j = 1, 2, . . . , n. (20)

Similarly, let Lx = {i | ki,x > 0}. A distance function between the local MFCC
histograms stored in Ai,x and Ai,j can be defined as

dMFCC(x, j) =
1

|Lx ∪ Lj |
∑

i∈(Lx∪Lj)

(
1

13b

13∑
c1=1

b∑
c2=1

|αc1,c2;i,x − αc1,c2;i,j |
)

(21)

where |Lx ∪ Lj | is the number of common words used by speakers sx and sj , b
denotes the chosen number of MFCC local histogram bins, and αc1,c2;i,j refers to
the c2-th bin in the local histogram of the c1-th MFCC at the i-th word spoken by
the j-th speaker column. A vector DMFCC(x) containing the distances between
the test speaker sx and all training speakers can be defined:

DMFCC(x) = [dMFCC(x, 1) dMFCC(x, 2) . . . dMFCC(x, n)]T . (22)

The elements of the distance vector in Eq. (22) can be normalized by dividing
with the maximum value admitted by the distances. A convex combination of
the distance vectors can be used to combine Eq. (19) and Eq. (22):

D(x) = γ DPLSI(x) + (1 − γ) DMFCC(x) (23)

where the parameter γ ∈ [0, 1] weighs our confidence for the text-derived dis-
tance. As γ → 0, the identification depends more on the information extracted
from speech, whereas for γ → 1 emphasis is given to the information extracted
from text.

The algorithm ends by finding the minimum element value in D(x), whose
index refers to the speaker that best matches sx and accordingly it is assigned
to sx, i.e.:

sx = arg min
j

[γ dPLSI(x, j) + (1 − γ) dMFCC(x, j)] . (24)

4 Experimental Results

To demonstrate the proposed multimodal speaker identification algorithm, ex-
periments are conducted on broadcast news (BN) collected within the DARPA
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Efficient, Affordable, Reusable Speech-to-Text (EARS) Program in Metadata
Extraction (MDE). That is, a subset of the so called RT-03 MDE Training Data
Text and Annotations corpus [7] is used. BN enable to easily assess the algo-
rithm performance, because each speaker has a specific set of topics to talk
about. The BN speech data were drawn from the 1997 English Broadcast News
Speech (HUB4) corpus. HUB4 stem from four distinct sources, namely the Amer-
ican Broadcasting Company, the National Broadcasting Company, Public Radio
International and the Cable News Network. Overall, the transcripts and anno-
tations cover approximately 20 hours of BN. In the experiments conducted, the
total duration of the speech recordings exceeds 2 hours.

To begin with, let us first argue on the motivation for combining text and
speech. Figs. 1 and 2 demonstrate two cases for 14 and 44 speakers, where the
average speaker identification rate increases by combining PLSI applied to text
and nearest neighbor classifier applied to MFCC histograms.
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Fig. 1. Identification rate versus Probe ID when 14 speakers are employed. Average
identification rates for (a) PLSI: 72%; (b) MFCCs: 68%; (c) Both: 75%.
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Fig. 2. Identification rate versus Probe ID when 44 speakers are employed. Average
identification rates for (a) PLSI: 69%; (b) MFCCs: 66%; (c) Both: 67%.

Next, two sets of experiments are conducted. Both sets contain three experi-
ments with a varying number of speakers. Speech and text modalities are treated
equally. That is, γ = 0.5 in Eq. (24). Fig. 3 shows the percentage of correctly
identified speakers within the R best matches for R = 1, 2, . . . , 20, i.e., the so
called cumulative match score versus rank curve after having performed 100 it-
erations and chosen 4 latent topics in PLSI as well as 10 bins for each MFCC
histogram. As we can see, the algorithm produces near perfect identification for
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20 speakers. Concerning the group of the 37 speakers, the results are satisfac-
tory after the 4th rank. The more difficult case, when identification among 90
speakers is sought, reveals a poor, but acceptable performance, especially after
the 7th rank.
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Fig. 3. Cumulative match score versus rank curve of the proposed algorithm using 4
topics and 100 iterations in PLSI model and 10 bins for every MFCC histogram

For comparison purposes, the percentage of correctly identified speakers
within the R best matches using only PLSI for the same number of iterations
and topics is plotted in Figure 4. The multimodal identification offers self-evident
gains for best match identification in the case of small and medium sized speaker
sets, while slight improvements of 3.32% are measured for the large speaker set.
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Fig. 4. Cumulative match score versus rank curve of PLSI using 4 topics and 100
iterations
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Fig. 5. Cumulative match score versus rank curve of the proposed algorithm using 12
topics and 250 iterations in PLSI model and 50 bins for every MFCC histogram
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Fig. 6. Cumulative match score versus rank curve of PLSI only using 12 topics and
250 iterations

In the second set of experiments, the proposed identification algorithm is
fine tuned by increasing the number of iterations to 250, the number of topics
to 12, and the number of histogram bins to 50. Although, such an increase
has a negative impact on the speed of the algorithm, the results are improved
considerably in some cases. From the comparison of Figures 3 and 5 it is seen
that the identification rate for 20 speakers is slightly increased for the best match.
For the medium-sized group of 37 speakers, the identification rate for the best
match is climbed at nearly 70% from 50% in the previous set. For the large group
of 90 speakers, the identification rate for the best match remains the same.

By repeating the identification using only PLSI with 12 topics and 250 itera-
tions, the percentage of correctly identified speakers within the R best matches
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shown in Figure 6 is obtained. The comparison of Figures 5 and 6 validates
that the identification rate at best match using both text and speech increases
considerably for small and medium sized speaker sets, while marginal gains are
obtained for large speaker sets. Moreover, the increased number of latent topics
and iterations in PLSI have helped PLSI to improve its identification rate.

5 Conclusions

In this paper, first promising speaker identification rates have been reported
by combining in a late fusion scheme text-based and speech-based distances in
experiments conducted on broadcast news of the RT-03 MDE Training Data
Text and Annotations corpus. Motivated by the promising results, we plan to
integrate MFCC histograms and document word histograms in PLSI, since both
features are of the same nature and to study their early fusion.
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Abstract. The paper presents a fully automatic palmprint verification
system which uses 2D phase congruency to extract line features from a
palmprint image and subsequently performs linear discriminant analy-
sis on the computed line features to represent them in a more compact
manner. The system was trained and tested on a database of 200 people
(2000 hand images) and achieved a false acceptance rate (FAR) of 0.26%
and a false rejection rate (FRR) of 1.39% in the best performing verifi-
cation experiment. In a comparison, where in addition to the proposed
system, three popular palmprint recognition techniques were tested for
their verification accuracy, the proposed system performed the best.

Keywords: Palmprint verification, 2D phase congruency, Linear dis-
criminant analysis.

1 Introduction

Biometrics is a scientific discipline that involves methods of automatically rec-
ognizing (verifying or identifying) people by their physical and/or behavioral
characteristics. Many biometric systems have already been presented in the liter-
ature, among them, systems which exploit biometric traits such as fingerprints,
face, voice, iris, retina, hand-geometry, signature or palmprints are the most
common [1].

Each of the listed biometric characteristics has its own strengths and weak-
nesses and is consequently more or less suited for a particular application do-
main. Face- and voice-based recognition systems, for example, are considered
to be unintrusive, they do, however, still have problems achieving high recog-
nition accuracy, especially when biometric samples (i.e., face images or speaker
recordings) are captured in uncontrolled environments. Iris and retinal recogni-
tion, on the other hand, exhibit high recognition accuracy, but require intrusive
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acquisition systems [2]. Opposed to these recognition systems, palmprint-based
recognition is considered both user-friendly as well as fairly accurate and thus
provides an attractive alternative to other biometric systems.

Existing (unimodal) palmprint recognition systems can according to [3] (based
on the employed feature extraction technique) be classified into one of three
groups: texture-based (e.g., [4]), line-based (e.g., [5,6]) and appearance-based
(e.g., [7,8]). Though all feature types are relevant for palmprint-based biometric
recognition, this paper focuses on line-based features.

Most of the palmprint recognition systems that make use of line features to
verify the identity of a user employ gradient-based methods to extract charac-
teristic lines from a palmprint image (e.g., [7,8]). While these methods work fine
on images of an appropriate quality (e.g., acquired in controlled illumination
condition, free of distortions caused by the pressure applied to the surface of
the scanner, etc.), they have problems when features have to be extracted from
palmprint images of a poorer quality. In these situations a more robust approach
is preferable. To this end, we have developed a palmprint verification system that
uses line features extracted with the phase congruency model and is therefore
relatively insensitive to image distortions caused by the acquisition procedure
(note that images acquired with a desktop scanner almost always contain regions
distorted by pressure - see Fig. 1).

Fig. 1. Distortions of a palmprint image acquired with a desktop scanner

The rest of the paper is organized as follows: Section 2 gives a short description
of the proposed palmprint verification system; Section 3 describes a series of
verification experiments and presents their results; Section 4 concludes the paper
with some final remarks and directions for future work.

2 System Description

The block diagram of the proposed palmprint recognition system is shown in Fig.
2. It is comprised of the following five modules: an acquisition module which uses
a desktop scanner to capture an image of the palmar surface of the hand; a pre-
processing module that extracts the region of interest (ROI), i.e., the palmprint
region, from the acquired image and normalizes the extracted ROI in respect
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to size, rotation and illumination; a feature-extraction module which computes
a set of phase congruency (PC) features from the normalized palmprint image
and subsequently performs the linear discriminant analysis (LDA) on the feature
set to enhance it’s discriminatory power; a matching module that compares the
computed feature set with a template (i.e., the mathematical representation of
the feature sets extracted during the enrollment session) and outputs a matching
score; and a decision module that uses the matching score to decide whether the
person presented to the system is who he/she claims to be. A detailed description
of each of the listed modules is given in the remainder of this section.

Fig. 2. The block diagram of the proposed palmprint recognition system

2.1 Image Acquisition

The image-acquisition module of the proposed palmprint recognition system
records grey-scale images of the palmar surface of the hand with the help of an
optical desktop scanner rated at a resolution of 180 dots per inch (256 grey lev-
els). When a person is presented to the system, he/she simply positions his/her
hand on the scanner with the fingers spread naturally [1]. The system then ac-
quires an image of the hand and passes it on to the preprocessing module.

2.2 Image Preprocessing

After the acquisition stage, the acquired hand image is subjected to the prepro-
cessing procedure which employs the following steps to extract and normalize
the palmprint ROI from the hand image:

• Binarization: In the first step the hand region is extracted from the acquired
grey-scale hand image (Fig. 3a) using an image thresholding procedure. Since
a desktop scanner is employed in the acquisition stage the background of the
image always appears as a black area in the image and the same (global)
threshold can be used for binarization of all hand images (Fig. 3b).

• Contour extraction: In the second step the contour of the hand is extracted
from the binarized hand image and used as the foundation for the palmprint
localization procedure (an example of the extracted contour is shown in
Fig. 3).
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Fig. 3. The preprocessing procedure: a) The hand image acquired by the desktop
scanner, b) The binary image of the hand region, c) The image of the contour of the
hand region, d) Extraction of the palmprint ROI, e) The normalized palmprint image

• ROI localization: To locate the palmprint ROI in the hand image, two refer-
ence points are determined in the third step of the preprocessing procedure.
The first, denoted as T1 in Fig. 3d, is located at the local minimum of the
hand contour between the little and the ring finger, while the second, de-
noted as T2 in Fig. 3d, is set at the local minimum of the contour between
the index and the middle finger. Based on the line connecting the reference
locations T1 and T2 two additional points, i.e., P1 and P2, are determined on
the hand contour as shown in Fig 3d. Finally, the palmprint ROI is located as
the square region whose upper two corners correspond to the middle points
of the line segments P1-T1 and T2-P2 [1,9].

• Normalization: In the last step the final palmprint ROI is obtained by ro-
tating the cropped palmprint region to a predefined orientation and resizing
it to a fixed size of 64 × 64 pixels. The geometrically normalized sub-image
is ultimately subjected to an illumination normalization procedure which
removes the mean of the pixel values from the grey-scale sub-image and sub-
sequently scales all pixels with their standard deviation. An example of the
normalized palmprint region is shown in Fig. 3e.

2.3 Feature Extraction

The feature vector used in the matching procedure of the proposed system is
extracted from the normalized palmprint image in two consecutive steps: in the
first step, a set of 512 phase congruency features is computed from the input
image and in the second step LDA is applied on this feature set to represent the
phase congruency features in a discriminative and compact manner.

Phase Congruency Features. There have been a number of palmprint recog-
nition systems presented in the literature that make use of line-based features,
e.g., [5,6]. Typically, these systems use line detectors which scan the palmprint
image for points of high intensity gradients to extract the line features. However,
varying illumination conditions during the image acquisition stage (when images
are captured with a camera-based sensor) or deformations of the palmprint re-
gion caused by pressure applied to the surface of the scanner (when images are
captured with an optical scanner) often result in the detection of spurious lines.



114 V. Štruc and N. Pavešić

To avoid the listed difficulties, our systems employs the phase congruency model
for line feature extraction.

The model searches for points in the palmprint sub-image where the 2D log-
Gabor filter responses (of the sub-image) over several scales and orientations are
maximally in phase [10,11].

Let G = {G(fh, θg) : h = 1, 2, ..., p; g = 1, 2, ..., r} denote the set of 2D log-
Gabor filters with p scales and r orientations and let G(fh, θg) = Ghg be defined
as:

Ghg = exp{−[ln(f/fh)]2

2[ln(k/fh)]2
}exp{−(θ − θg)2

2σ2
θ

}, (1)

where f and θ denote the polar coordinates of the log-Gabor filter in the fre-
quency domain, fh denotes the filters center frequency (in our experiments it was
set to fh = 0.33 · (2.1)1−h), k defines the bandwidth of the filter in the radial
direction (the ratio k/fh is commonly set to a constant value, for example, 0.55
like it was done in our case), θg = (g − 1) · π/r represents the orientation of the
filter and σθ controls the angular bandwidth of the 2D log-Gabor filter (we used
a value of σθ = 1.2 · (π/r)).

�� �� �� �� �� ��

Fig. 4. a) The normalized palmprint image; Phase congruency image for b) p = 3 and
r = 4, c) p = 3 and r = 6, d) p = 3 and r = 8, e) p = 5 and r = 6, f) p = 5 and r = 8

Furthermore, let I(x), where x stands for the pixel location in the spatial
domain, denote the grey-scale distribution of the normalized palmprint image
(e.g., Fig. 3e). The magnitude Ahg(x) and phase φhg(x) responses of the image
I(x) at a specific scale h and orientation g of the log-Gabor filter can then be
computed as:

Ahg(x) =
√

Re2[I(x) ∗ Gs
hg] + Im2[I(x, y) ∗ Gs

hg], (2)

φhg(x) = arctan(Im[I(x) ∗ Gs
hg]/Re[I(x) ∗ Gs

hg]), (3)

where * denotes the convolution operator, Gs
hg stands for the log-Gabor filter in

the spatial domain at the scale h and the orientation g and Re[X ] and Im[X ]
represent the real and imaginary parts of the convolution output.

Finally, the two-dimensional phase congruency features can according to [10]
be computed using the following expression:

PC2D(x) =

∑
g

∑
h Wg(x)�Ahg(x)∆Φhg(x) − Tg�∑

g

∑
h Ahg(x) + ε

, (4)
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where Tg represents the estimated noise energy at orientation g, Wg(x) denotes
a weighting function that weights for the frequency spread, ε is a small constant
which prevents divisions by zero, the symbols � � denote the following operation:

�X − T � =
{

X − T , if X > T
0 , otherwise , (5)

and ∆Φhg(x) is a phase deviation measure defined as:

∆Φhg(x) = cos(φhg(x) − φg(x)) − | sin(φhg(x) − φg(x))|. (6)

In equation (6) φhg(x) denotes the phase angle at the location x of the log-
Gabor filter phase response at scale h and orientation g, while φg(x) represents
the mean phase angle at the orientation g.

As we can see from the above discussion, phase congruency features are com-
puted over multiple scales and orientation (using all filters from G) making the
feature extraction procedure robust to noise, illumination variations and image
contrast. In addition to its robustness, the presented model also successfully
explains the human perception of line (or edge) features [10].

Once a hand image is acquired, the palmprint sub-image extracted, properly
normalized and transformed using the described phase congruency model, the
final feature vector x is constructed by dividing the phase congruency image into
a number non-overlapping blocks of size 4 × 4 pixels and then computing the
mean value and standard deviation of the pixels in each of the 256 blocks (recall
that we used palmprint images of size 64 × 64 pixels), i.e.,

x = (µ1, σ1, µ2, σ2, ..., µ256, σ256)T . (7)

However, as we can see from Fig. 4, the line features extracted with the phase
congruency model vary in their appearance when log-Gabor filters with different
numbers of scales and orientations are used. The effects of these parameters
on the verification performance of the proposed system will be evaluated in
Section 3.2.

Linear Discriminant Analysis. Let us consider a set of n d-dimensional
training phase congruency feature vectors xi arranged in a d × n column data
matrix X, i.e., X = [x1,x2, ...,xn] and let us assume that each of the feature
vectors belongs to one of C classes (i.e., subjects - clients of the system). Based on
the training data contained in the matrix X, LDA first identifies a subspace (i.e.,
a subspace projection matrix W) by maximizing a class separability criterion
in the form of the ratio of the between-class to the within-class scatter matrix
and then projects the phase congruency feature vectors into this subspace. The
class separability criterion (sometimes called Fisher’s discriminant criterion) is
defined as follows [7]:

J(W) =
|WTSBW|
|WTSW W| , (8)
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where SB and SW denote the between-class and within-class scatter matrices
defined as:

SB =
C∑

i=1

ni(µi − µ)(µi − µ)T , (9)

SW =
C∑

i=1

∑
xj∈Ci

(xj − µi)(xj − µi)
T , (10)

and the symbols µ, µi, ni and Ci represent the global mean of all training
feature vectors, the mean vector of the training feature vectors from the i-th
class, the number of feature vectors in the i-th class and the label of the i-th
class respectively.

It can be shown that the LDA transformation matrix W consists of the eigen-
vectors corresponding to the first m ≤ C − 1 largest eigenvalues of the following
eigenproblem:

S−1
W SBwi = λiwi, i = 1, 2, ..., m (11)

Using the calculated transformation matrix W = [w1,w2, ...,wm] an arbitrary
phase congruency feature vector x can be projected into the LDA subspace with
the help of the following expression:

y = WTx. (12)

However, in the field of palmprint recognition the number of training samples
(i.e., training phase congruency feature vectors) per class is usually significantly
smaller than the number of elements contained in each of the samples. This fact
makes the matrix SW singular (its’ rank is at most n−C) and the computation of
the transformation matrix W using equation (11) impossible. To overcome this
problem, we first projected the matrices SB and SW into the principal component
subspace to ensure that the matrix SW is nonsingular and then performed LDA
in this subspace. A detailed description of the employed approach can be found
in [7].

2.4 Matching and Decision

At the matching stage the live feature vector y of a given input palmprint image
computed with the help of the procedure described in the previous section is
compared to the template yi associated with the claimed identity. The following
similarity measure is used to produce the matching score:

d(y,yi) =
|yyT

i |√
yyTyiy

T
i

. (13)

If the value of the normalized correlation coefficient defined by (13) is higher
than the decision threshold the live feature vector and consequently the input
palmprint image are recognized as genuine, otherwise they are recognized as
belonging to an impostor.
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3 Experiments

3.1 Database and Experimental Setup

The proposed palmprint verification system was tested on hand-images of 200
subjects. During the acquisition stage each of the subjects was asked to position
his/her hand on the desktop scanner 10 consecutive times, resulting in a database
of 2000 images.

For testing purposes the subjects were randomly split into three groups,
namely, the client group (120 subjects), the evaluation impostor group (30 sub-
jects) and the test impostor group (50 subjects). Images belonging to subjects
from the client group were further divided into sets of training images (4 per
subject), evaluation images (3 per subject) and test images (3 per subject). Im-
ages from the client training set were used to construct client-templates (i.e.,
mean feature vectors), images from the impostor as well as the client evaluation
set were used to compute the decision threshold and to optimize the system
parameters (i.e., number of scales and orientations of the 2D log-Gabor filters)
while the remaining test sets were employed exclusively for the final performance
evaluation. During this last stage each of the 3 client test images was compared
to the corresponding class in the database (a total of 3×120 = 360 experiments),
whereas all 10 impostor test images were compared to each of the classes in the
database (a total of 10 × 50 × 120 = 60, 000 experiments).

Three error rates were used in our experiments to rate the accuracy of the
proposed palmprint verification system: the false acceptance rate (FAR) which
measures the frequency of falsely accepted impostors, the false rejection rate
(FRR) which measures the frequency of falsely rejected clients and the equal
error rate (ERR) that is defined as the error rate at which the FAR and FRR
are equal. In addition to providing an accuracy measure for the proposed system,
the ERR (obtained on the evaluation sets) was used for determining the decision
threshold.

3.2 Parameter Tuning

Our first set of experiments assessed the performance of the proposed palmprint
verification system with respect to the number of scales and orientations of the
2D log-Gabor filters used to compute the phase congruency features. The system
was tested for 5 different combinations of the values of p and r (see Section 2.3).
In all cases the number of features was set to its maximal value, i.e., m = 119.
The results of the experiments are presented in Fig. 5 and Table 1 which show
the ROC curves and the values of the FAR and FRR at the ERR operating point
respectively.

As we can see, varying the number of filter orientations had only a small effect
on the verification performance of the proposed system. Larger differences were
detected when the number of scales was changed. Furthermore we can notice
that the error rates at the equal error operating point for images processed with
log-Gabor filters at 3 scales and different numbers of orientations are virtually
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Fig. 5. The ROC curves of the performed experiments

Table 1. The FRRs and FARs of the experiments at the equal error operating point

No. of scales No. of orient. FAR(%) FRR(%)
p = 3 r = 4 0.26 0.28
p = 3 r = 6 0.26 0.28
p = 3 r = 8 0.25 0.28

p = 5 r = 6 0.50 0.83
p = 5 r = 8 0.28 0.56

the same. However, by looking at Fig 5 we can see that the combination of 3
scales and 8 orientations performed the best (considering all possible operating
points).

3.3 Performance Evaluation

The goal of the second set of verification experiments was to assess the perfor-
mance of the proposed system on an independent set of test images. Addition-
aly, three popular palmprint-feature extraction techniques were implemented,
trained and compared to our approach. Specifically the following methods were
implemented for comparison: the eigenpalm approach [8], the fisherpalm appo-
rach [7] and a line-feature [5] based approach (denoted as LFBA in Table 2)
in combination with LDA. Note, however, that the original LFBA, i.e., as pre-
sented in [11], does not use LDA to extract the final palmprint features. LDA
was added to allow for a fair comparison with the proposed approach which also
includes a LDA step.

The results of the experiments in terms of the FRR and FAR obtained with
the threshold that ensured equal error rates on the evaluation set are presented
in Table 2. Two findings should be emphasized based on the these results: first,
the FRRs of all methods increased in the final testing stage, most likely due to an
unrepresentative training set which did not account for all possible variations in
the appearance of the line features of the client images; and second, the proposed
line features resulted in the best verification performance of all tested methods.
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Table 2. Comparison of the FRRs and FARs for different feature extraction techniques

Feature extraction procedure FAR(%) FRR(%)
Eigenpalm 2.94 3.61
Fisherpalm 0.30 1.94

LFBA 0.39 2.22
Proposed approach 0.26 1.39

4 Conclusion and Future Work

We have presented a palmprint recognition system that used phase congruency
and linear discriminant analysis to extract discriminative palmprint features.
The system was tested on a database of 2000 hand images and achieved a false
acceptance rate of 0.26% and a false rejection rate of 1.39% using the decision
threshold that ensured equal error rates on an independent evaluation set. Based
on these encouraging results, our future work will be focused on the integration
of phase congruency features into a multi-modal (i.e., intra-modal) palmprint
recognition system.
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Abstract. In this paper we describe a number of experiments relating to PCA-
based palmprint and face recognition. The experiments were designed to deter-
mine the influence of different training sets used for the construction of the  
eigenpalm and eigenface spaces on the recognition efficiency of biometric sys-
tems. The results of the recognition experiments, obtained using three palmprint 
databases (PolyU, FER1, FER2) and one face database (XM2VTSDB), suggest 
that it is possible to design a biometric recognition system that is robust enough 
to successfully recognize palmprints (or faces) even in cases when the eigen-
spaces are constructed from completely independent sets of palmprints or face 
images. Furthermore, the experiments show that for PCA-based face-recogni-
tion systems with an eigenspace that is constructed by using palmprint-image 
databases, and PCA-based palmprint-recognition systems with an eigenspace 
that is constructed using a face-image database, the recognition rates are unex-
pectedly improved compared to the classic approach. 

Keywords: Biometrics, Eigenface, Eigenpalmprint, Face recognition, Palm-
print recognition, Principal Component Analysis. 

1   Introduction 

The hand and the face provide the source for a number of physiological biometric 
features that are used in unimodal and multimodal biometric systems for user authenti-
cation or recognition [1]–[4]. Principal component analysis (PCA) [5], also known as 
the Karhunen-Loeve transform, is commonly used for both palmprint [1], [6]–[8] and 
face recognition [9]–[11]. PCA is one of the so-called appearance-based methods, 
which operate directly on an image-based representation and extract features in the 
subspace derived from the training images. The subspace constructed using a PCA is 
defined by the principal components of the distribution of the training set consisting of 
the images of the person's palmprints (or face).  This subspace is called the eigenspace. 

The key point is that these images are selected from the images of all the people 
that will be enrolled in the system. In other words, in a biometric-based identification 
or verification system a PCA is used to transform the data from an original, high-
dimensional space into a feature space with significantly fewer dimensions. A PCA 
constructs the projection axes (which define the feature space with lower dimension-
ality) based on the training samples of the users taken from the original space. After 
that, one or more samples from the training set are projected onto these axes to obtain 
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the feature vectors that represent the users’ template(s), to be stored in a database. 
These templates are used in the matching process with the users’ test templates (dur-
ing testing of the system). The stored templates can also be treated as enrolled users’ 
templates and they are used for matching with the users’ live templates during the 
authentication phase. 

Since the exact distribution of the palmprints (or the face images) cannot be ob-
tained from the training samples, the projection axes are calculated based on an ap-
proximation with the limited set of training samples. It is clear that the orientations of 
the axes depend on how good is the approximation of the distribution. The more train-
ing samples we have (assuming that the samples are randomly selected) the better is 
the approximation, and the projection axes are then closer to their ideal positions. In 
this case ideal means the positions of the axes obtained from the exact distribution.  

We based our experiments on the assumption that for a target biometric-based rec-
ognition system the distribution of the samples can be equally or even better approxi-
mated with the large number of samples that are not all obtained from the users of the 
target system than it can be with the limited set of samples only available during the 
training phase, taken from the users that will be enrolled in the system. Our intension 
here was to determine whether it is possible to avoid the problem of recalculating or 
updating the eigenspace and the stored templates for each new user that is going to be 
enrolled in the system. 

We then extended our experiments in an unusual way, i.e., we used the set of face 
images for the construction of the eigenspace that is then used in the PCA-based palm-
print-recognition system, and, vice versa, the set of palmprint images were used to 
calculate the eigenspace that is then used in the PCA-based face-recognition system.  

2   Experiments and Results 

The following sets of experiments were performed: 

• Testing of the palmprint-recognition system with a dependent eigenspace, i.e., the 
system where the eigenspace was constructed from the training set of palmprint 
images of the users that are used for the enrolment; 

• Testing of the face-recognition system with a dependent eigenspace; 
• Testing of the palmprint-recognition system with an independent eigenspace, i.e., 

the system where the eigenspace was constructed from an independent set of palm-
print images that do not belong to the users of the system; 

• Testing of the palmprint-recognition system that is based on the eigenspace ob-
tained from the training set of the face images; 

• Testing of the face-recognition system that is based on the eigenspace obtained 
from the training set of the palmprint images. 

In order to conduct the above sets of experiments, two types of biometric-based 
recognition systems were built: a system with a dependent eigenspace and a system 
with an independent eigenspace. Both types are related to palmprint- and face-based 
recognition. Fig. 1 shows the block diagram of the system with a dependent eigen-
space; Fig. 2 shows the block diagram of the system with an independent eigenspace. 
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Fig. 1. Block diagram of the system with a dependent eigenspace 

 

Fig. 2. Block diagram of the system with an independent eigenspace 

For both types of system we used the 1-Nearest Neighbour rule as the classification 
method, with the Euclidean distance as a measure of the dissimilarity. 

2.1   Databases 

There are four basic databases that are used in our experiments: FER1, FER2, 
XM2VTSDB [12] and PolyU [13]. For the purpose of the experiments we collected 
two independent palmprint databases (FER1 and FER2) with images taken using a 
desktop scanner. The structure of the databases is as follows: FER1 has a total of 545 
palmprint images taken from 109 people with 5 images per person and FER2 has a  
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total of 752 images collected from 94 people with 8 images from each. The databases 
were created on different occasions and it was ensured that none of the people who 
gave their palmprints for one of the databases did the same for the other one. The 
images were scanned at 256 grey levels, with a resolution of 180 dpi for the FER1 
database and 150 dpi for the FER2 database. 

The XM2VTSDB database contains 1180 face images taken from 295 people, with 
4 images from each person. 

The PolyU database contains palmprint images from 386 different palms, captured 
with a specialized device using a camera. Because of the number of images it con-
tains, the PolyU database is suitable for our experiments to test the systems with an 
independent eigenspace. For this purpose we randomly selected images from the 
PolyU database to form three databases to be structurally equal (the same number of 
people and images per person) to FER1, FER2 and XM2VTSDB databases. These 
databases are referred to as PolyU1, PolyU2 and PolyU3, respectively. 

Table 1. shows the databases used in the experiments. 

Table 1. Databases used in the experiments 

Database Number of users Total number of images 
FER1 
(palmprint, 150dpi/256 grey levels) 109

 
545 (5 images per user) 

FER2 
(palmprint, 180dpi/256 grey levels) 94

 
752 (8 images per user) 

PolyU  
(palmprint, CCD based capturing 
device) 

386
 
7752  

XM2VTSDB 
(face) 

295 1180 (4 images per user) 

PolyU1 (derived from PolyU) 109 545 (5 images per user) 
PolyU2 (derived from PolyU) 94 752 (8 images per user) 
PolyU3 (derived from PolyU) 295 1180 (4 images per user) 

2.2   Preprocessing 

From the palmprint images we extracted a square region of interest (ROI) from the 
centre of the palm. The ROI is defined on the basis of two stabile points on the contour 
of the hand: the first is located in the valley between the little finger and the ring finger, 
and the second is located between the index finger and the middle finger. The preproc-
essing phase for the scanned images from the FER1 and FER2 databases and the cam-
era images of the PolyU database can be summarized in the following steps: (i) global 
thresholding; (ii) border following; (iii) locating the region of interest (ROI); (iv) ex-
tracting the ROI and compensating for its rotation; (v) applying the Gaussian mask; (vi) 
resizing the ROI to a size of 40 by 40 pixels; and (vii)  performing a histogram equali-
zation. Fig. 3 illustrates the phases of preprocessing for a palmar hand image from the 
FER1 database. 
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             a)                                           b)                                            c) 

Fig. 3. Illustration of the preprocessing of a palmar hand image from the FER1 database: a) 
input image, b) localization of the ROI, and c) ROI (40x40 pixels) before and after the histo-
gram equalization 

The face images from the XM2VTSDB database were normalized using the nor-
malization method described in [8]. Using this method the elliptical region of the face 
is detected and the background is removed. To obtain images compatible with the 
palm ROI images, the centre of the normalized image, with a size of 40 by 40 pixels, 
is extracted and a histogram equalization is performed (Fig. 4).  

 
             a)                                                             b)                             c) 

Fig. 4. Illustration of the preprocessing phases for face images: a) input image, b) normalized 
image, and c) cropped ROI (40x40 pixels) before and after the histogram equalization 

2.3   Palmprint- and Face-Recognition Systems with a Dependent Eigenspace 

The experiments were performed according to the scenario described in Fig. 1. The 
results obtained in these experiments were used as a reference for comparing with the 
other systems.  

The number of images per person used for the training and enrolment varied, de-
pending on the structure of the database. In the case of the FER1 and PolyU1 data-
bases three of five images from each person were used for the training and enrolment, 
and the remaining two images were used for the recognition. This means that the total 
number of images used for the construction of the eigenspace was 109 x 3 = 327, 
where 109 is the number of people. In the case of the FER2 and PolyU2 databases, 
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four images per person were used for the training and enrolment, and the remaining 
four were used for the testing. The eigenspace was built from a set of 94 x 4 = 376 
images, where 94 is the number of people. In the last case, for the databases 
XM2VTSDB and PolyU3, two images per person were used for the enrolment and 
training, and the remaining two were used for the testing. A total of 295 x 2 = 590 
images were used to build the eigenspace, where 295 is the number of people. 

During the enrolment phase, all the training images that were used to build the ei-
genspace were projected onto it to form a set of users’ templates and then stored in 
the system database. 

Recognition rates were calculated for the various lengths of the feature vectors, i.e., 
for the number of PCA components. In each experiment the training and testing im-
ages were randomly picked from the set of available samples. The recognition rates 
were averaged over 10 experiments, except for the XM2VTSDB and the PolyU3 
databases where, because of the small set of samples, only six experiments were per-
formed. The results are shown in Table 2.   

Table 2. Recognition rates of the systems with a dependent eigenspace 

Recognition rates (%) 

Number of PCA components 

Database 
 

25 50 100 150 200 250 
FER1  94.13 96.19 96.61 96.88 96.84 96.84 
FER2  89.87 92.29 93.32 93.51 93.56 93.59 
PolyU1 92.94 94.54 94.50 94.40 94.27 94.17 
PolyU2  93.48 94.97 95.27 95.16 95.16 95.11 

P
al

m
pr

in
t 

PolyU3 84.66 87.77 86.86 86.44 85.68 85.57 
 Face: 

XM2VTSDB 68.98 75.80 78.31 78.68 79.09 79.22 

The best palmprint-recognition rates vary from 93.59% to 96.88% for the different 
databases and for the different lengths of the feature vectors. The best result for the 
face recognition was obtained for 250 components of a feature vector (79.22%). 

2.4   Palmprint-Recognition Systems with an Independent Eigenspace 

The experiments with an independent eigenspace were performed by following the 
scenario described in Fig. 2. In each experiment one palmprint database was used for 
the construction of the eigenspace (the training database) and another one for the 
enrolment and recognition (the testing database). The two databases were chosen to 
be structurally equal, i.e., with the same number of images per person and the same 
number of people. This means that in the case when the PolyU1 database was used for 
the construction of the eigenspace, the FER1 database was used for the enrolment and 
testing, and vice versa, when the FER1 database was used for the construction of the 
eigenspace, the PolyU1 database was used for the enrolment and testing. Since in the 
experiments with the dependent eigenspace not all the images from the database could 
be used for the construction of the eigenspace (some of the images were separated for 
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the testing set) we did the same in these experiments. We first performed the tests 
with the eigenspace constructed from part of the database, like it was with the de-
pendent eigenspace (for the FER1 and PolyU1 databases, 327 instead of 545 images), 
and then we performed the same set of experiments, but this time using the eigen-
space constructed from the complete databases (all 545 images in the case of the 
FER1 and PolyU1 databases).  

The results of the palmprint-recognition systems with an independent eigenspace 
are summarized in Table 3. The results of the experiments where the complete data-
base was used for the construction of the eigenspaces are marked with (*) (Table 3.).  

The selection of the enrolment and testing samples, as well as the way in which the 
recognition rates were calculated, was the same as described for the experiments with 
a dependent eigenspace. In this way the obtained results were suitable for a compari-
son with the results from Table 2.  

Table 3. Recognition rates of the palmprint-recognition systems with an independent eigenspace 

Recognition rates (%) 

Number of PCA components 

Database for 
eigenspace 

Enrolment 
and testing 
database 

25 50 100 150 200 250 
PolyU1 FER1 89.77 93.21 95.14 95.96 96.06 96.06 
PolyU1 (*) FER1 92.02 95.64 96.74 97.02 96.97 97.11 
FER1  PolyU1 94.13 95.23 95.55 95.83 95.78 95.78 
FER1 (*) PolyU1 94.26 95.60 96.15 95.55 95.78 95.50 
PolyU2  FER2 85.56 90.29 92.85 93.19 93.19 93.35 
PolyU2 (*) FER2 85.77 90.43 92.87 93.30 93.51 93.78 
FER2 PolyU2 93.61 95.27 95.74 95.90 95.85 95.61 
FER2 (*) PolyU2  93.27 95.24 95.77 95.82 95.66 95.53 

(*) – eigenspace constructed from the complete database  

The results show that the use of a larger number of images (the complete database) 
for the construction of the eigenspace improved the recognition rates for all the data-
bases, except in the case when the PolyU2 database was used for the enrolment and 
testing and the FER2 database was used for the construction of the eigenspace. In this 
case the results deteriorated slightly. The improvement is particularly noticeable when 
the FER1 database was used for the enrolment and testing.  

When comparing the results to those systems with a dependent eigenspace (Table 2.) 
we can see that for all the databases, the overall best recognition rates were better for the 
systems with an independent eigenspace (!). In the case when the PolyU1 and PolyU2 
databases were used for the enrolment and testing the system with an independent 
eigenspace outperformed the system with a dependent eigenspace, when a small 
number of PCA components (25) was used, which is not the case for the FER1 and 
FER2 databases. We should draw attention to the case of the PolyU1 database, where 
for the same number of PCA components (50) the recognition rate of the system with 
an independent eigenspace (95.60%) was more than 1% better than the best result  
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of the system with a dependent eigenspace (94.54%). In the same case the best result 
of the independent eigenspace system was 96.15%, which was achieved for 100 PCA 
components. 

In the worst case for the system with an independent eigenspace, which happened 
when the FER1 database was used for the enrolment and testing, the difference be-
tween the best recognition rates was less than 1% (96.88% compared to 96.06%), in 
favour of the system with a dependent eigenspace. The overall best recognition rate 
(97.11%) was achieved for the same database in the system with an independent ei-
genspace, where the whole set of images from the PolyU1 database was used for the 
construction of the eigenspace. The above results support our assumption outlined in 
the Introduction. 

2.5   Palmprint Recognition Using a Face Eigenspace and Face Recognition 
Using a Palm Eigenspace 

We extended, in a slightly unusual way, the experiments with the independent eigen-
space in such a manner as to use the eigenspace constructed from the face images in 
the palmprint-recognition system, and vice versa, the eigenspace constructed from 
palmprint images in the face-recognition system. For this purpose we used the 
XM2VTSDB face database and the structurally equal PolyU3 palmprint database (see 
Table 1.).  

We first performed the palmprint-recognition experiments using only two face im-
ages per person from the database XM2VTSDB for the construction of the eigenspace, 
as was the case in the system with a dependent eigenspace, and then using all the face 
images from the database XM2VTSDB.  

After that, in a similar way, we performed the face-recognition experiments using 
only two palmprint images per person from the database PolyU3, and then using the 
complete database PolyU3 for the construction of the eigenspaces. 

The results of the palmprint- and face-recognition are shown in Table 4. The rec-
ognition rates are averaged over six experiments. The experiments where all the im-
ages of the database were used for the construction of the eigenspace are marked with 
(*). 

For the palmprint-recognition systems the best recognition rate was improved from 
87.77%, in the system with a dependent eigenspace (for PolyU3 database, Table 2.), 
to 89.38%, in the system with an eigenspace constructed from the face images (Table 
4.) (!). In the latter the best recognition rate was achieved when using a larger number 
of PCA components, i.e., 150, in comparison to the dependent system, where the best 
recognition rate was for 50 PCA components.  

Use of a larger set of palmprint images for the construction of the eigenspace im-
proved the face-recognition results compared to the case when the XM2VTSDB face 
database was used for the enrolment and testing. The best result for the face recogni-
tion improved from 79.22%, in the system with a dependent eigenspace (see Table 
2.), to 80.14%, in the system that used the eigenspace constructed from the palmprint 
images of the PolyU3 database, and to 81.10% when the complete PolyU3 database 
(*) was used. In both face-recognition systems the best results were achieved using 
the same number of PCA components (250).  
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Table 4. Recognition rates of the palmprint- and face-recognition systems 

 Recognition rates (%) 

Number of PCA components Database for 
eigenspace 

Enrolment and 
testing database 25 50 100 150 200 250 

XM2VTSDB  PolyU3 80.68 87.29 88.98 89.38 89.12 88.92 
XM2VTSDB (*) PolyU3 80.90 87.09 88.64 88.70 88.59 88.36 
PolyU3  XM2VTSDB 59.35 70.81 77.51 79.35 79.83 80.14 
PolyU3 (*) XM2VTSDB 59.57 71.07 78.84 80.02 80.56 81.10 

(*) – eigenspace constructed from the complete database  

3   Conclusions 

In this paper we describe a number of experiments with PCA-based palmprint and 
face recognition. The experiments were designed to determine the influence of the 
different training sets used for the construction of the eigenpalm and eigenface spaces 
on the recognition accuracy of biometric-based recognition systems. The experiments 
can be divided into the following sets: 

i) in the first set of experiments we performed a test of the PCA-based palm-
print-recognition systems using a classic approach, where the eigenspaces 
were constructed from the training sets of palmprint images of the users that 
are used for the enrolment. The same approach was used for a PCA-based 
face-recognition system.  

ii) in the second set of experiments, in order to test the robustness of the sys-
tems, the eigenspaces were constructed from an independent set of palmprint 
images from the users that were not enrolled in the system.  

iii) in the third set of (unusual) experiments, for the PCA-based palmprint recog-
nition we used the eigenspaces calculated from the face images, and for the 
PCA-based face recognition we used the eigenspaces obtained from the 
palmprint images.  

A summary of the results is as follows: 

i) comparing the results of the palmprint recognition obtained with the PCA-
based systems with a dependent eigenspace (Table 2.) with the results ob-
tained with the PCA-based systems with an independent eigenspace (Table 
3.) it is clear that for all the databases the overall best recognition rates are 
better for the systems with an independent eigenspace (!); 

ii) for PCA-based face-recognition systems with an eigenspace constructed us-
ing palmprint-image databases, the recognition rates were unexpectedly im-
proved (compared to the classic approach) from 79.22% (Table 2.) to 80.14% 
and 81.10% (Table 4.) for the PolyU3- and PolyU3(*)-based eigenspaces, re-
spectively. 

The results of the experiments obtained using the three basic palmprint databases 
(PolyU, FER1, FER2) and the three derived palmprint databases (PolyU1, PolyU2 and 
Polyu3), and the single face database (XM2VTSDB) (discussed in detail in Section 3) 
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led to the interesting main conclusion that it is possible to design a biometric-based 
recognition system that is robust enough to successfully recognize palmprints (or 
faces) even in the case when the eigenspaces are constructed from completely inde-
pendent sets of palmprint or face images. From this it follows that there is no need to 
construct a new eigenspace or apply methods for an incremental eigenspace update 
[14], [15] when new users are enrolled in the system. Furthermore, it will be possible 
to install a biometric-based PCA-authentication system with predefined projection axes 
that are independent of users’ database for a specific application. Of course, we are 
aware that the above conclusions are a little rash and that they will have to be verified 
by further experiments, and so we are planning to test our findings on larger palmprint 
and face databases. 
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Abstract. This paper describes an empirical study to investigate the
performance of a wide range of classifiers deployed in applications to clas-
sify biometric data. The study specifically reports results based on two
different modalities, the handwritten signature and fingerprint recogni-
tion. We demonstrate quantitatively how performance is related to clas-
sifier type, and also provide a finer-grained analysis to relate performance
to specific non-biometric factors in population demographics. The paper
discusses the implications for individual modalities, for multiclassifier
but single modality systems, and for full multibiometric solutions.

Keywords: Classifiers, signature, fingerprints.

1 Introduction

Optimising the processing of biometric identity data, whether within modali-
ties or in multimodal form, is a fundamental challenge in system design and
deployment. There are many potential options available in relation to the pro-
cessing engines which might be adopted, and any selection must be made on
the basis both of application requirements and with regard to a knowledge of
the degree of match between the underlying population data distributions and
system operating characteristics.

The availability of multiple information sources for biometric data processing
can suggest various different strategies by means of which to achieve enhanced
performance. These include, for example, selecting an optimal processing tech-
nique from among many options, combining processors to create a multiple pro-
cessor system to work on a single modality source and, ultimately, combining
multiple biometric modalities to overcome the shortcomings of any one individ-
ual modality. In each case, however, there are obvious questions to be asked
about the processing engines implemented, and the performance of which they
are inherently capable.

This paper reports on an empirical study which addresses these fundamental
questions. Specifically, we investigate the application of a wide range of differ-
ent possible techniques for the classification of biometric data. We will present
performance metrics which show quantitatively how the choice of classifier will
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determine the performance which can subsequently be achieved by a system
operating within a specific modality. We then demonstrate how a lower-level
analysis can deliver more targeted selection strategies in situations where out-
come might be guided by the availability of specific information which can in-
form the decision-making process (the availability of demographic/non-biometric
data, for example). Our investigation will also contribute to the development
of approaches to the implementation of multi-classifier solutions to identifica-
tion processing based on a single modality, providing performance indicators
across a range of classifiers which might be adopted in such a multiple classifier
configuration.

Finally, because we will present experimental data from two (fundamentally
different) modalities, our study will be valuable in pointing towards some issues
of relevance in multimodal processing configurations in future studies. We have
chosen, on the one hand, fingerprint processing to illustrate the use of a physio-
logical biometric of considerable current popularity and wide applicability and,
on the other hand, the handwritten signature, a behavioural biometric which is
currently less widely adopted, in order to give a broad base to our study and to
allow the most general conclusions to be drawn.

Our study will therefore provide both some useful benchmarking for system
implementation, and a logical starting point for further development of practical
systems for effective and efficient biometric data processing.

2 Methods and Methodology

We report some experiments based on two biometric modalities, respectively
fingerprint images and handwritten signature samples. The databases used for
experimentation are described in detail in Section 3. Since the focus of our study
is on the performance of different classifier types, we identify a pool of specific
classification algorithms giving a broad representation of different approaches
and methodologies.

In our experiments, each database was divided in two sets, one of which (con-
taining approximately 90% of the samples) was used to train the classifier and
the other of which (10%) was used to validate the method. The 10-fold-cross-
validation method [14] was used to evaluate classifier performance. In this evalu-
ation method, the training set is divided into ten folds, each with approximately
the same number of samples. Thus, a classifier is trained with nine folds and
tested with the remaining unused fold. Validation is performed every time the
test fold is run.

The analysis of the resulting classifier performance used the statistical t-test
[16] with 95% degree of confidence. This test uses t-Student distribution to com-
pare two independent sets. The use of this test allows us to say whether a classi-
fier is statistically more accurate than another just by observing whether the p
value is smaller than the threshold established. The pool of classifiers selected,
comprising eight specific classifiers, is now defined and briefly described.
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Multi-Layer Perceptron (MLP) [12]: MLP is a Perceptron neural network
with multiple layers [19]. The output layer receives stimuli from the intermedi-
ate layer and generates a classification output. The intermediate layer extracts
the features, their weights being a codification of the features presented in the
input samples, and the intermediate layer allows the network to build its own
representation of the problem. Here, the MLP is trained using the standard
backpropagation algorithm to determine the weight values.

Radial Basis Function Neural Network (RBF) [5]: This adopts an activa-
tion function with radial basis, and can be seen as a feed forward network with
three layers. The input layer uses sensory units connecting the network with its
environment. The second layer executes a non-linear transformation from the
input space through the output space performing the radial basis function.

Fuzzy Multi-Layer Perceptron (FMLP) [6]: This classifier incorporates
fuzzy set theory into a multi-layer Perceptron framework, and results from the
direct ”fuzzyfication” in the network level of the MLP, in the learning level, or
in both. The desired output is differently calculated when compared with the
MLP, the nodes which are related with the desired output being modified during
the training phase, resulting in a ”fuzzy output”.

Support Vector Machines (SVM) [17]: This approach embodies a function-
ality very different from that of more traditional classification methods and,
rather than aiming to minimize the empirical risk, aims to minimize the struc-
tural risk. In other words, the SVM tries to increase the performance when
trained with known data based on the probability of a wrong classification of a
new sample. It is based on an induction method which minimizes the upper limit
of the generalization error related to uniform convergence, dividing the problem
space using hyperplanes or surfaces, splitting the training samples into positive
and negative groups and selecting the surface which keeps more samples.

K-Nearest Neighbours (KNN) [4]: This embodies one of the most simple
learning methods. The training set is seen as composed of n-dimensional vectors
and each element represents an n-dimensional space point. The classifier esti-
mates the k nearest neighbours in the whole dataset based on an appropriate
distance metric (Euclidian distance in the simplest case). The classifier checks
the class labels of each selected neighbour and chooses the class that appears
most in the label set.

Decision Trees (DT) [18]: This classifier uses a generalized ”divide and con-
quer” strategy, splitting a complex problem into a succession of smaller sub-
problems, and forming a hierarchy of connected internal and external nodes. An
internal node is a decision point determining, according to a logical test, the
next node reached. Whether this is an external node, the test sample is assigned
to the class associated with that node.

Optimized IREP (Incremental Reduced Error Pruning) (JRip) [10]:
The Decision Tree usually uses pruning techniques to decrease the error rates
of a dataset with noise, one approach to which is the Reduced Error Pruning
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method. Specifically, we use Incremental Reduced Error Pruning (IREP). The
IREP uses a ”divide to conquer” approach. This algorithm uses a set of rules
which, one by one, are tested to check whether a rule matches, all samples related
to that rule then being deleted. This process is repeated until there are no more
samples or the algorithm returns an unacceptable error. Our algorithm uses a
delayed pruning approach to avoid unnecessary pruning, resulting in a JRip
procedure.

Naive Bayesian Learning (NBL) [9]: This algorithm relates to a simple prob-
abilistic classifier based on the application of Bayes theorem with the assumption
of strong independence. The principle is to estimate the conditional probability
of each class label with respect to the test sample. In this method, it is assumed
that each attribute is independent of the others.

3 Experimental Study

In order to determine the performance of the classifiers described, two databases
of biometric samples were chosen, containing respectively, samples of hand-
written signatures and fingerprint images. Section 3.1 describes the signature
database and the results of an empirical investigation of classification of this
data, while Section 3.2 describes a similar investigation with respect to the fin-
gerprint samples.

3.1 Signature Database

The database contained signature samples collected as part of a BTG/University
of Kent study [11] from 359 volunteers (129 male, 230 female) from a cross-
section of the general public. The capture environment was a typical retail outlet,
providing a real-world scenario in which to acquire credible data. There are 7428
signature samples in total, where the number of samples from each individual
varies between 2 and 79, according to the distribution shown in Table 1.

Table 1. Distribution of sample set sizes

Gender 2-10 samples 11-30 samples 31-50 samples 51-79 samples

Female 54 148 23 5
Male 42 66 22 9

The data was collected using an A4-sized graphics tablet with a density of
500 lines per inch. For our study 18 representative features were extracted from
each sample. These features were:

– Execution Time: The execution time to draw the signature.
– Pen Lift: The number of times the pen was removed from the tablet during

the execution time.
– Signature Width: The width of the image in mm.
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– Signature Height: The height of the image in mm.
– Height to Width Ratio: The division of the signature height by the signature

width.
– Average Horizontal Pen Velocity in X: The pen velocity in the x plane across

the surface of the tablet.
– Average Horizontal Pen Velocity in Y: The pen velocity in the y plane.
– Vertical Midpoint Pen Crossings: The number of times the pen passes though

the centre of the signature.
– M00: Number of points comprising the image.
– M10: Sum of horizontal coordinate values.
– M01: Sum of vertical coordinate values.
– M20: Horizontal centralness.
– M02: Vertical centralness.
– M11: Diagonality - indication of the quadrant with respect to centroid where

image has greatest mass.
– M12: Horizontal Divergence - indication of the relative extent of the left of

the image compared to the right.
– M21: Vertical Divergence - indication of the relative extent of the bottom of

the image compared to the top.
– M30: Horizontal imbalance - location of the centre of gravity of the image

with respect to half horizontal extent.
– M03: Vertical imbalance - location of the centre of gravity of the image with

respect to half vertical extent.

Table 2. Error Mean ± Standard Deviation, False Positive (fp) and False Negative
(fn) of the Signature Database

All ages 18-25y 26-40y 41-60y over 60y

Method EM±SD fp fn fp fn fp fn fp fn

FMLP 8.47 ± 2.92 0.51 1.79 0.27 1.55 0.28 1.11 0.99 1.97
MLP 9.88 ± 2.81 0.73 1.48 0.41 1.07 0.53 1.09 1.76 2.81
RBF 12.51 ± 2.97 0.93 2.11 0.45 1.69 0.85 1.43 2.07 2.98
SVM 12.78 ± 4.21 0.92 2.81 0.51 1.60 0.37 1.94 1.84 2.79
JRip 15.72 ± 3.12 0.97 3.69 0.34 2.18 0.41 2.48 1.17 4.48
NBL 18.74 ± 2.45 1.83 3.94 0.87 2.12 0.92 2.51 2.86 5.07
DT 17.27 ± 3.52 1.67 2.85 1.02 1.59 0.83 2.25 2.78 4.28

KNN 20.71 ± 3.18 2.91 3.85 1.57 2.16 1.14 2.27 2.28 4.53

Because of the nature of the data collection exercise itself, the number of sam-
ples collected differs considerably across participants. We impose a lower limit
of 10 samples per person for inclusion in our experimentation, this constraint
resulting in a population of 273 signers and 6956 signatures for experimentation.
Table 2 shows the performance of the best individual classifiers with respect to
the signature database, where the classifier configurations used were chosen tak-
ing into account the smallest mean overall error rate. As can be seen, the error
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delivered by the FuzzyMLP classifier is the smallest of the algorithms tested,
although a very wide variation in achievable performance is observed. Arrang-
ing performance indices in decreasing order also reveals a general relationship
between error rate performance and classifier complexity.

Table 2 presents a more detailed analysis of the performance results, recording
separately the false positive and false negative error rates, and sub-dividing
the test population into four different broad age groups. This shows that, in
general, the false negative error rate exceeds the false positive rate. However,
it is especially interesting to note (the sometimes quite marked) performance
differences between the different age groups, especially if the youngest and oldest
groupings are compared.

These results are very interesting, both because they again reveal significant
diversity in relation to the performance characteristics of different classifier ap-
proaches, but also because they point to a changing performance profile when
considered on an age-related basis. We observe error rates rising in the elderly
population group as compared with the younger signers, a factor which is ap-
parent both for false positive and false negative errors, although the increase is
generally more marked in the former case. It is also seen that the less power-
ful classification algorithms smooth out these age-related differences, although
against a background of generally poorer error rate performance.

3.2 Fingerprint Database

The database used for our study of fingerprint data was that compiled for the
Fingerprint Verification Competition 2002 [15]. This in fact comprises four dif-
ferent (sub)-databases (designated DB1, DB2, DB3 and DB4), three of them
containing images of ”live” prints acquired with different sensors, and the fourth
containing synthetically generated fingerprint images.

Table 3. Devices used in the Fingerprint acquisition

Sensor Type Image Size Resolution

DB1 Optical (TouchView II - Identix) 388x374 (142 Kpixels) 500 dpi
DB2 Optical (FX2000 - Biometrika) 296x560 (162 Kpixels) 569 dpi
DB3 Capacitive (100 SC - Precise Biometrics) 300x300 (88 Kpixels) 500 dpi
DB4 Synthetic (SFinGe v2.51) 288x384 (108 Kpixels) about 500 dpi

The evaluation of the real datasets was performed in three groups of 30 people
each. There were three sessions where prints from four fingers per person were
collected, and the images included variations in the collection conditions, such
as varying types of distortion, rotation, dry and moist fingers. For each dataset,
a subset of 110 separate fingers, with eight impressions per finger, was included
(880 samples at all). Each dataset is divided in two sets, set A (800 samples)
and set B (80 samples). The individuals donating the prints are different in each
dataset. Table 3 records the sensor technologies and other relevant information
for each database.
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The minutiae were extracted using the NFIS2 (NIST Fingerprint Image Soft-
ware 2) [1]. Each minutia is represented by eight indicators, as follows:

– Minutia Identifier
– X-pixel Coordinate
– Y-pixel Coordinate
– Direction
– Reliability Measure
– Minutia Type
– Feature Type
– Integer Identifier of the feature type

Table 4. Error Mean, Standard Deviation, False Positive and False Negative Rates of
the Fingerprint Database

DB1 DB2

Method EM±SD fn fp EM±SD fn fp

FMLP 10.22±2.64 8.01 2.21 9.17±2.93 7.80 1.37
SVM 12.34±3.14 9.88 2.46 10.99±1.48 7.18 3.81
RBF 13.07±2.82 9.24 3.83 12.34±3.00 7.49 4.85
MLP 13.89±2.97 10.41 3.48 9.84±4.46 6.74 3.10
JRip 14.01±3.77 10.09 3.92 14.74±3.55 8.33 6.41
DT 14.08±3.66 10.44 3.64 13.84±3.69 10.61 3.23

KNN 14.99±3.21 10.94 4.05 15.08±3.74 12.01 3.07
NBL 15.23±4.01 11.74 3.49 15.68±3.41 9.94 5.74

DB3 DB4

Method EM±SD fn fp EM±SD fn fp

FMLP 12.37±3.69 8.94 3.43 9.38±1.36 7.91 1.47
SVM 13.65±3.57 9.87 3.78 12.16±1.41 10.94 1.22
RBF 14.64±3.62 10.47 4.17 12.96±1.67 11.09 1.87
MLP 14.86±3.74 9.33 5.53 13.54±1.84 12.01 1.53
JRip 13.52±4.10 9.83 3.69 13.94±1.99 11.37 2.57
DT 13.69±3.87 10.34 3.35 13.97±2.14 11.49 2.48

KNN 16.94±4.23 12.66 4.28 14.59±2.42 12.06 2.53
NBL 15.34±3.95 11.49 3.85 15.22±2.31 13.22 2.00

As each fingerprint image generates a different number of detectable minutiae,
while the classifiers adopted need a common number of entries, it is necessary
to normalise the number of minutia. Here we use a standard algorithm for core
detection [13] and identity the 13 minutiae closest to the core to use as input to
the classifier.

Table 4 shows the error rates obtained with the fingerprint data (cf. Table 2).
As was the case with the signature-based experiment, the mean error delivered
by the FuzzyMLP classifier is smaller than all other classifiers, but in this case
the pattern of classification performance across the whole tested range differs
from the previous experiment. We note, however, that the KNN classifier again
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performs the poorest. This behaviour demonstrates that this data is somewhat
more challenging than the signature case, largely because of the problem of
missing minutiae in the samples, but also reveals common trends in classifier
performance across modalities.

Also in Table 4, it can be seen the error rates broken down for false positive
and false negative rates. The false positive rate is again greater than the false
negative, and performing the t-test between the two classifiers with the smaller
error means gives the figures shown in Table 5. This shows that the FuzzyMLP
is statistically more accurate than the classifiers returning the second largest
correct mean.

Table 5. T-test to Fingerprint Database

Database Classifiers Tested p Value

DB1 FMLP x RBF 0.000451
DB2 FMLP x MLP 0.066
DB3 FMLP x JRip 0.433
DB4 FMLP x MLP 0.00779

The available literature reports a number of studies [2] [3] [7] [8] using this
database, with a particular focus on DB3 because of its particularly poor image
quality. Our study shows some particularly interesting characteristics in relation
to these studies, enhancing current insights into this important classification task
domain. In particular, our study has shwon the possibility of improving the false
positive/false negative balance compared with most results reported using this
difficult data.

4 Discussion and Conclusions

In this paper we have reported on an empirical study of classifier performance
in typical biometric data classification tasks. Although some caution needs to
be exercised in interpreting such results, especially in generalizing specific in-
dicators, this study provides some pointers to useful practical conclusions, as
follows:

– We have provided some empirical data which demonstrates the wide vari-
ability in identification performance in relation to classifier selection for a
given modality. This is seen to be the case both when the principal index
of performance is absolute overall error rate and, perhaps most significantly,
also when the balance between False Acceptance and False Rejection is con-
sidered.

– Although caution is advisable when pointing to any individual classifier as
representing a ”best” choice, our experiments do reveal some general trends
concerning the relative merits of different classification approaches which,
while not absolute, may be useful pointers to selection strategies.
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– A finer-grained analysis of performance within a specific modality can also
generate useful practical insights into the relation between lower-level fac-
tors and performance returned using different classification approaches. In
relation to the signature modality, for example, even our basic analysis of dif-
ferent age profiles within a population reveals important information about
changing patterns of vulnerability with respect to system performance in-
dicators across the age spectrum. This could be very significant in system
optimisation in a number of application scenarios.

– Preprocessing/data preparation can have a significant impact on subsequent
classification performance (we implemented, by way of experiment, an al-
ternative and cruder minutiae normalisation procedure, which substantially
degraded classification performance.

– Multiclassifier solutions to single modality configurations are under-represen-
ted in the literature, and yet the multiclassifier methodology is widespread
and often very effective in many application domains. Our empirical study
provides relevant information to inform further investigation of this approach
to enhancing identification performance.

– Despite the fact that multiclassifier systems can combine the benefits of many
classifiers, they do not necessarily provide entirely ”intelligent” solutions. It
may be advantageous for the classifiers to be more interactive taking account
of their individual strengths and weaknesses. Multiagent systems offer such
a possibility, and our results provide a starting point for designing a novel
solution based on such an operating principle.

– Multibiometric solutions are now widely recognised to offer advantages not
only in enhancing overall system performance, but also, significantly, in of-
fering greater flexibility and user choice in system configuration. This study
provides some initial insights into how to match classifiers and modality-
specific data in determining an optimal configuration. Moreover, although
there is now an extensive literature on modality combination, adopting the
signature as one of the target modalities is a relatively little used option, and
our benchmark performance characterisation can provide a starting point for
a productive study of optimal modality selection.

– It is apparent that productive possibilities exist for integrating biometric
and non-biometric information in the specification of task-specific optimal
solutions.

This study therefore both provides some quantitative data to characterise
some common approaches to classifier implementation for application to practi-
cal scenarios in biometrics, and sets out some possibilities for developing more
sophisticated and effective strategies for developing enhanced practical systems
in the future.
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Abstract. Classifiers based on Gaussian mixture models are good per-
formers in many pattern recognition tasks. Unlike decision trees, they
can be described as stable classifier: a small change in the sampling of
the training set will produce not a large change in the parameters of
the trained classifier. Given that ensembling techniques often rely on
instability of the base classifiers to produce diverse ensembles, thereby
reaching better performance than individual classifiers, how can we form
ensembles of Gaussian mixture models? This paper proposes methods to
optimise coverage in ensembles of Gaussian mixture classifiers by promot-
ing diversity amongst these stable base classifiers. We show that changes
in the signal processing chain and modelling parameters can lead to sig-
nificant complementarity between classifiers, even if trained on the same
source signal. We illustrate the approach by applying it to a signature
verification problem, and show that very good results are obtained, as
verified in the large-scale international evaluation campaign BMEC 2007.

1 Introduction

Successul ensembling methods such as bagging [3] and boosting [5] rely on the
fact that the ensemble member classifiers are unstable, that is, a small change in
the sampling of the training set will produce a large change in the trained clas-
sifier. Unstable classifiers include decision trees and neural networks [3], while
others such as näıve Bayes are considered stable [8]. In reality, there is a con-
tinuum of stability, in the sense that the amount of output change incurred
by different classifiers with respect to changes in the training set is not simply
binary (“stable” or “unstable”) [2].

Training several unstable classifiers with different sampling of the training
set is one way to produce an ensemble that is diverse. The hope is that the
training procedure produces classifiers whose output is complementary: they
yield erroneous outputs for different samples. By combining these classifiers, the
total variance can be reduced, typically leading to reductions in expected error
rates.

B. Schouten et al. (Eds.): BIOID 2008, LNCS 5372, pp. 140–149, 2008.
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In many applications dealing with real-life signals, a classifier that systemati-
cally yields good results is the Gaussian mixture model (see e.g. [13]). Example
applications are speaker verification [16] or face recognition [21]. Leaving out
effects of critically small training sample sizes with respect to the model com-
plexity, Gaussian mixture models can be considered as stable classifiers. Given
that multiple-classifier systems can outperform single-classifier systems on a large
number of tasks and datasets [12], it would seem beneficial to build ensembles
of Gaussian mixture classifiers. However, as pointed out above, diversity is an
important factor for successful ensembling. How, then, can we increase diversity
in ensembles of stable classifiers?

Recent work has shown that adding components to stable classifiers before
ensembling could improve results over standard techniques such as bagging for
these classifiers classifiers. For example, in the Random Oracle technique applied
to näıve Bayes classifiers [19], the training set is split at random between the
two classifiers, and at test time the base classifier is also selected at random.
Another technique based on a hybrid of näıve Bayes and decision trees, called
Levelled Näıve Bayesian Trees [22], is to grow a decision tree whose leaves are
näıve Bayes classifiers. The hope there is that the näıve Bayes classifiers will
inherit the instability of the decision tree growing procedure, and make them
more amenable to boosting.

In this paper, to optimise the coverage of the ensemble, we propose instead
to act at different levels of the pattern recognition processing chain of individual
classifiers in order to increase diversity in ensembles of Gaussian mixture classi-
fiers, and note that this does not prevent the application of other destabilising
techniques. We should also note that, while it seems “diversity” is a desirable
property of classifier ensembles in order to reduce error rate, there is no con-
sensus on how to measure it and how it relates to ensemble performance [11],
although theoretical work in this area is progressing [14].

The rest of this paper is laid out as follows: In Section 2 we present in more
details techniques that can be used to increase diversity in ensembles of stable
classifier. In Section 3, we show the detailed application of these principles to
a multiple-classifier signature verification system based on Gaussian mixture
models. In Section 4 we provide experimental results on a signature verification
database, and Section 5 concludes the article.

2 Increasing Diversity in Ensembles of Stable Classifiers

A pattern recognition systems consists of a front-end responsible for extracting
features, a training procedure to learn the parameters of the classifier, and a
testing algorithm to obtain soft or hard output from the classifier. We will now
examine these levels in more details and how they can be modified to influence
the output of a classifier, which in turn can promote diversity in an ensemble.
In the application field of biometrics, some of these techniques fall under the
general heading of “multibiometrics” [20].
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2.1 Changes to the Front-End

The front-end to pattern recognition systems uses a signal processing chain that
starts with real-world analogue signals. A schematic view is shown on Figure 1.

signal acquisition pre-processing feature extraction post-processing training

Fig. 1. Front-end for pattern recognition

Changes in any of the processing steps will affect all other steps further down-
stream, and lead to various amounts of classifier diversity. Even within the same
modality (say, infrared images), changing the sensor at the signal acquisition
stage can lead to significant differences between classifiers. In this regard, mul-
timodal pattern recognition can be seen as a way to obtain diverse ensembles.

The pre-processing performed on the data can have a large influence on
the feature extraction process. Filtering, denoising, imputing missing data and
other linear and non-linear transformations of the digitised signal can lead to
significant differences further down the processing chain.

The representation of the signal as vectors of features typically involves a
non-linear transformation of the pre-processed signal. For example, the use of
Fourier transforms and related transforms such as the DCT at the feature
extraction stage change signal representation and may permit the extraction
of features that lead to classifiers complementary to those trained on other signal
representations. This technique is used in many applications such as language
recognition, where different parameterisations of speech are often combined [15],
or fingerprint recognition, where minutiae can be combined with skin pores [10].
Even within the same signal representation, it is possible to use random feature
subspace methods [7] to purposefully obtain diverse classifiers.

Finally, the post-processing stage, which typically consists of some form of
statistical normalisation of the feature vectors (mean removal being typical in
speech applications [6]), can also introduce important changes to the trained
parameters of the classifier by applying linear or non-linear transformations to
the original feature space.

2.2 Changes in the Sampling of the Training Set

By our definition of stability, varying the sampling of the training set, a common
strategy for achieving diversity in ensembles, will not be effective for increasing
diversity in ensemble of stable classifiers (although see [19] for a more sophisti-
cated approach). Thus, we propose to concentrate efforts on other parts of the
pattern recognition system.

2.3 Change in Model Complexity

Classifiers implemented as statistical models (Gaussian mixture models, genera-
tive Bayesian networks) form a family in which the number of parameters has a
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great influence on classification results. For example, modifying the covariance
matrix structure (say, from diagonal to full) can substantially alter the output
of the classifier. Likewise, by modifying the number of hidden variables in a
Bayesian network corresponding to the number of components in a mixture of
Gaussians, and thereby changing the number of parameters in the model, it is
possible to decorrelate stable models that are trained from feature vectors where
everything else in the front-end (acquisition, pre-processing, feature extraction,
post-processing, samplig of the training set) is identical.

2.4 Change in Scoring Procedure

The same model can be used to compute a score in different ways. Depending
on the model type, this is a way to promote diversity. In this regard, the recent
technique presented in [23], whereby a hidden Markov model is used to produce
likelihood output and a Viterbi-related output which are then combined, can
be seen as a way to exploit complementarity in classifier output. However, for
GMMs, it is likely that gains obtained from combining all-components scoring
with top-components-scoring1 would be small.

3 Application: A Gaussian Mixture Ensemble for
Signature Verification

In this section, we present an application of the techniques exposed in Section 2 to
the problem of signature verification, where the Gaussian mixture model is one of
the best-performing classifiers [17]. The goal is to train a diverse set of signature
verification classifiers, so that they can be effectively combined. The Gaussian
mixture ensemble we present consists of L =6 different Gaussian mixture model
classifiers. In fact, since biometric verification problem can be cast as a series
of 2-class problems, each of the U users is modelled by one of the U Gaussian
mixture ensembles.

We do not use a measure of diversity based on the label (hard, binary) outputs
of the classifiers [11], but rather the normalised mutual information between the
scores (soft, continuous) outputs of the classifiers. We assume that having lower
mutual information between pairs of classifiers is equivalent to having a higher
diversity in the ensemble2. We use the following definition for normalised mutual
information:

Ī(Sc1; Sc2)
�
=

I(Sc1; Sc2)√
H(Sc1)H(Sc2)

, (1)

where I(Sc1; Sc2) is the mutual information between the scores output of two
classifiers, and H(Scl) is the entropy of the scores output of the lth classifier.
1 This is a common technique in speaker recognition [1], where high model orders and

large datasets warrant the summing of some of the Gaussian components in the
likelihood computation

2 Using conditional mutual information would allow us to take into account the effect
of already having included certain classifiers in the ensemble.
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3.1 Preprocessing

On some low-power signature acquisition platforms such as personal digital assis-
tants, data acquisition may produce missing values intermittently. Missing data
is also a frequent occurence in slow and fast strokes. In this case, an effective
approach is to interpolate the missing data. By using different interoplation al-
gorithms, or none at all, it is possible to introduce variability in the signal which
will be reflected further down the processing chain. Figure 2 shows the result
of two different interpolation methods on the same data. Looking at a single
classifier, it is not obvious which interpolation method is the best in terms of
accuracy.
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Fig. 2. Signature preprocessing for recovery of missing data on BMEC 2007

A second pre-processing technique that could lead to diversity is rotation
normalisation. Indeed, in some situations, such as handheld device-based ac-
quisition, it is likely that the orientation of the signature with respect to the
horizontal axis of the acquisition surface can be very variable. We estimate the
principal axis of the signature by eigendecomposition: The eigenvector associ-
ated with the largest eigenvalue indicates the axis of greatest variance. Again,
from looking at the accuracy of a single classifier it is not obvious whether this
really is of help, but it can be used to force diversity in an ensemble.

The preprocessing used by the local and global classifiers in our ensemble is
detailed in Table 1.

3.2 Feature Extraction

In the parametric paradigm, local, segmental, or global parameters are computed
from the pre-processed signals and used as features.

Local features are extracted at the same rate as the incoming signal: that is,
each input sample data vector corresponds to a local feature vector.

Segmental features are extracted once the signature has been cut into seg-
ments. A segment typically consists of a sequence of points for which some defi-
nition of coherence holds.
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Global features summarise some property of the complete observed signature;
for instance the total signing time, pen-up to pen-down ratio, etc.

Changing the signal representation and combining the resulting classifiers is a
common technique in pattern recognition, and has been applied also to signature
verification [4]. Our Gaussian mixture ensemble consists of 5 classifiers trained
on local features, and 1 classifier trained on global features (see Table 1).

Table 1. Details of classifier in the ensemble

Name GL1 GL2 GL3 GL4 GL5 GG

Interpolation LI B-S LI LI B-S LI
Rotation y n y n y n

feature set 1 1 1 2 3 4
user model order 24 36 2
world model order 4

3.3 Modelling

Diversity can be enforced in ensembles of Gaussian mixture models by changing
the number of parameters used for the constituant classifiers, for instance by
changing the type of covariance matrix (diagonal, full, spherical...), or by choos-
ing a different number of Gaussian components in the mixture. A further way
of increasing diversity is by using a MAP adapation scheme instead of direct
training.

3.4 Diversity in the Ensemble

The 5 GMM classifiers based on local features, denoted GL1...5, and the GMM
classifier based on global features, denoted GG, use the specific combinations of
preprocessing, feature extraction, and model orders shown in Table 1. In the ta-
ble, LI referes to linear interpolation, while B-S refers to B-spline interpolation.
Rotation indicates whether rotation normalisation is performed or not. The fea-
ture sets are as follows: feature set 1 comprises {xt, yt, ∆, ∆∆}, where xt and yt

are the sampled horizontal and vertical position of the pen. The ∆ and ∆∆ fea-
tures are numerically approximated first, respectively second derivatives of the
base features. Feature set 2 is {xt, yt, θt, vt, ∆, ∆∆}, where θt is the writing an-
gle and vt is the instantaneous writing speed. Feature set 3 is {xt, yt, zt, ∆, ∆∆},
where zt is a binary variable representing pressure. Feature set 4 comprises 11
global features, described in [18]. Lastly, different number of components are
used in the mixture, denoted user model order.

In terms of classifier output, these changes result in a diverse ensemble of
GMMs, with complementarity clearly showing on Figure 3. As could be expected,
the different parameterisation of the signal (local or global) result in the largest
diversity, but it can also be observed that changing the model order or the
preprocessing can also lead to important changes in classifier output. To put the
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results in perspective, the normalised mutual information between a vector x
consisting of 1000 samples drawn at random from a uniform distribution between
0 and 1 and the vector-valued sin(x), a near-linear relationship, is 0.75. The
normalised mutual information between two vectors of dimension 1000 randomly
drawn from a uniform distribution between 0 and 1 is 0.02. Thus, it can be seen
that significant reductions in dependence between classifiers can be achieved by
applying the approach proposed here: for example classifiers GL1 and GL3 have
a normalised mutual information of 0.41, while the only difference between them
is the model order (and the random initialisation of the EM algorithm).
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Fig. 3. Mutual information between classifiers in the ensemble. Note that the diagonal
(equivalent to the entropy of each classifier) has been set to 0 for enhanced contrast.

4 Verification Experiments and Results

4.1 Database

The BMEC2007 development database contains 50 users, each with two sessions,
and is part of the larger BioSecure DS3 dataset. For each user, the first session
contains 5 genuine signatures and 10 skilled forgeries3. The second session con-
tains 15 genuine signatures and 10 skilled forgeries. Signatures are acquired on a
low-power mobile platform (Ipaq PDA). This means that some data is missing,
and interpolation approaches outlined in Section 3.1 have to be applied. Further-
more, the orientation of the signatures is haphazard. The acquisition platform
only captures binary pressure (on/off) and x,y signals. No pen orientation infor-
mation is available. The low quality of the data explains why error rates are in
general high on this database compared to other signature databases.

3 These forgeries fall between levels 6 and 8 in [9, Table 3], as the forger has no visual
contact with the victim, but is allowed to see several times the dynamics of signing.
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4.2 Protocol

For each user, We train their set of classifiers (GL1...5 and GG) on the 5 genuine
signatures of the first session. We then run these classifiers on the remaining held-
out test data. Thus, for each user we obtain 15 genuine and 20 skilled forgery
scores, resulting in a total of 750 genuine signature scores and 1000 skilled forgery
scores.

The ensemble classifier (in the present case a simple mean rule, but similar
results are obtained using logistic regression) is then trained and tested with this
score data using 5-fold cross-validation.

4.3 Results

Glancing at Figure 4, it appears that the local classifiers in the ensemble offer
approximately the same performance, while the global classifier trails behind. By
ensembling local classifiers via the mean rule, it is already possible to substan-
tially lower the error rate, indicating that our coverage optimisation approach
based on changes in preprocessing, feature subsets, and modelling complexity is
effective. Further adding a global classifier, itself with different features and mod-
elling complexity, yields improved performance. This could be expected given
that global information is complementary with local information, and that time
information (signature length) is incorporated in the global feature set. While
not reported here, we have performed experiments on other signature databases
with similar results. It is interesting to note that, while classifiers GL3 and GL4
have virtually identical performances, their mutual information is low (0.3); this
is to be accounted for mainly by the rotation normalisation and the inclusion of
tangent angles in one feature set. None of them stands out in isolation, but they
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can be usefully combined because of their diversity. It is certainly possible to
reduce the complexity of this ensemble by removing a few local classifiers, while
still preserving an adequate accuracy.

This ensemble performed well in the BMEC 2007 competition, comprising a
database 430 users, and has taken first place for random forgeries (about 4.0%
EER), second place for skilled forgeries (about 13.6% EER), and first place for
synthetic forgeries (about 10.7% EER).

5 Conclusions

In biometric verification applications, Gaussian mixture models are generally
top performers. Other classifiers commonly used in pattern recognition, such as
decision trees or random forests, are not often used as base classifiers. We have
shown that despite their being categorised as stable, Gaussian mixture models
can serve as base classifiers in ensembles if coverage is optimised adequately. To
this end, the signal processing chain and other components of the pattern recog-
nition pipeline has to be modified to introduce variability. While the resulting
classifiers have roughly the same accuracy, they are complementary and can be
usefully combined in an ensemble.
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Abstract. The determination of hashes based on biometric data is a recent topic 
in biometrics as it allows to handle biometric templates in a privacy manner. 
Two main applications are the generation of secure biometric templates and 
cryptographic keys. Depending on these applications, there are different re-
quirements with regard to possible errors. On one side, authentication perform-
ance based on biometric hashes as feature representation can be measured by 
common biometric error rates such as EER. Thus, generated hashes for each 
single person have to be only similar in a certain degree. On the other side, 
biometric hashes for cryptographic issues have to be identical and unique for 
each individual, although measured data from same person differs or data from 
different people may be similar. Therefore, we suggest three measures to esti-
mate the reproducibility performance of biometric hash algorithms for crypto-
graphic applications. To prove the concept of the measures, we provide an  
experimental evaluation of an online handwriting based hash generation algo-
rithm using a database of 84 users and different evaluation scenarios. 

Keywords: Biometrics, biometric hashing, collision, handwriting, measures, 
reproducibility, semantic fusion, verification. 

1   Introduction 

In current biometric research, the generation of hash values based on biometric input 
is a recent topic. One goal of biometric hashing is the determination of a stable hash 
value based on a biometric trait of one person from its fuzzy input data in order to 
assure either authenticity and integrity, or confidentiality and privacy of biometric 
information. Another aim is the generation of unique individual values for crypto-
graphic purposes ([1]), since the biometric information of a person is available any-
time and anywhere, without the need to remember secret information or to present a 
special token.  

In the following, a small selection from the variety of publications related to bio-
metric hashing is presented, without neglecting others. In [2] the authors present a 
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method to calculate a cryptographic key based on a spoken password. Therefore, a 12-
dimensional vector of cepstral coefficients is used as well as an acoustics model, 
which is speaker dependent. Based on these components, segmentation is carried out 
in order to create different types of features as basis of a so called feature descriptor 
which can be used as hash value. The biometric hashing method described by Viel-
hauer et al. in [3] is based on online handwriting biometrics and determines a feature 
vector of statistical parameters. These parameters are transformed into a hash value 
space using an interval mapping function, which results in a hash vector as feature 
vector representation. This method is described in more detail in section 2, since it 
was used as reference algorithm for the evaluation in this paper. Further methods for 
biometric hash generation can be found also for other biometric modalities, e.g. for 
face [4], fingerprint [5] or DNA [6]. 

This paper is structured as follows: The next section discusses relations between 
cryptographic and biometric hash functions and introduces the Biometric Hash algo-
rithm, which is used as reference algorithm for our experimental evaluation. In the 
third section, new measurements are described to estimate the reproducibility per-
formance of a biometric hash function motivated from [7]. The fourth section explains 
a fusion strategy of combining biometric hashes based on different handwritten con-
tents. The evaluation database, methodology and the results with regard to biometric 
error rates and hash reproducibility are described in the fifth section. The last section 
concludes this paper and gives an overview of future work in this field of biometric 
research. 

2   Biometric Hashing 

Since the idea of a biometric hashing function is based on the principles of crypto-
graphic hashing, the first part of this section discusses differences and similarities of 
cryptographic and biometric hash functions. In the second part, the reference algo-
rithm used in our experimental evaluation is reintroduced shortly. 

2.1   Cryptographic Hash Functions vs. Biometric Hash Functions 

A cryptographic hash function (h: A → B) has to fulfill different requirements ([8]): It 
has to be a so-called one-way function that provides the property of irreversibility, 
which describes the computational impossibility to determine any input data a from a 
hash value h(a). Further, the reproducibility property of a hash function has to ensure 
that if any input data a and a’ are equal, then also the output data h(a) and h(a’) are 
equal. Contrariwise, in case a and a’ are not equal, the corresponding hashes h(a) and 
h(a’) have to be unequal. This requirement is called collision resistance. A fourth 
requirement of cryptographic hashes is the bit sensitivity. It states that small changes 
in the input data a (e.g. by alternating one bit) should lead to a big change in the out-
put data h(a). 

Biometric hash functions should be also one-way functions to avoid obtaining the 
private user-related or relatable biometric input data from hashes. However, since bio-
metric data is varying each time of acquisition even for the same user and trait (intra-
class variability), and data of different people may be similar (inter-class similarity), 
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reproducibility and collision resistance have to be redefined for biometric hashing: On 
one side, reproducibility for the purpose of biometric hashing means the identical hash 
reproduction for the same person and trait, although the input data varies within given 
bounds. On the other side, the collision resistance of biometric hash functions describes 
the ability to distinguish between (similar) data from different persons to generate dif-
ferent individual and unique hashes. Consequently, due to the intra-class variability and 
inter-class similarity, the bit sensitivity property of cryptographic hashes cannot be 
mapped into the biometric hash methodology. 

2.2   Biometric Hash Algorithm for Online Handwriting Biometrics 

This subsection describes our Biometric Hash reference algorithm (see [3], [9]) based 
on online handwriting. Since we developed the new measures to quantify the degree 
of changes in an optimization process of the Biometric Hash algorithm, we use it as 
reference algorithm for our exemplarily evaluation based on these new measures. 
Figure 1 shows on the left side the enrollment process of the Biometric Hash algo-
rithm. The first input data is a set of n raw data samples (D1, …, Dn) derived from the 
handwriting acquisition sensor, e.g. tablet PC or PDA. 
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Fig. 1. Enrollment and hash generation processes of the Biometric Hash algorithm [3] 

The aim of the enrollment process is to generate a so-called interval matrix IM for 
each user based on its raw data and several parameters. Generally, each raw data 
sample Di (i=1,…,n) consists of a temporarily dependent sequence of physical values 
supported by the device, such as pen tip coordinates x(t) and y(t), pressure p(t) and 
pen orientation angles altitude (Φ(t)) and azimuth (Θ(t)). During the enrollment proc-
ess, for each of the raw data samples Di derived from a person, a statistical feature 
vector is determined with a dimensionality of k (k=69 in the current implementation). 
IM stores for each feature the length of an interval and an offset, where both values 
are calculated based on the intra-class-variability of the person, by using his/her statis-
tical feature vectors. To parameterize the hash generation, the tolerance vector TV is 
used. The TV supports an element wise parameterization of the statistical features 
during the generation of hash values by the so-called interval mapping function. Thus, 
the dimensionality of TV is also k. The TV can be determined for each user individu-
ally or globally by a group of persons, either based on the registered users or a disjoint 
user set. The third input data is the tolerance factor TF as global hash generation pa-
rameter, which is a scalar value. Using the TF, it is possible to scale the mapping 
intervals for all feature components globally by one factor, thus affecting both repro-
ducibility and collision resistance, where increasing values of TF lead to the tendency 
of increasing reproducibility at cost of increasing collision probabilities. The user’s 
identity ID is the fourth input for the enrollment process, which is linked to the refer-
ence data. Note that in our context, reference data is the output of the Biometric Hash 
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algorithm’s enrollment mode in form of the interval matrix IMID that provides infor-
mation for the mapping of the individual statistical features to the corresponding hash 
values, but neither the original biometric input nor the actual feature vectors. The 
right side of Figure 1 shows the hash generation process of the Biometric Hash algo-
rithm. Here, the input data consists of only one single raw data sample DID and the 
interval matrix IMID of a claimed identity ID. The raw data DID is used to determine a 
k-dimensional statistical feature vector. Based on this vector and the IMID the interval 
mapping function calculates a biometric hash vector bID, where interval lengths and 
offsets provided by IMID are used to map each of the k statistical features to a corre-
sponding hash value. The biometric hash vector can be used either for cryptographic 
applications (e.g. key generation) or for biometric verification. In the latter case, the 
biometric hash vector bID generated from the currently presented authentication sam-
ple DID is compared against the reference hash vector bref ID of the claimed identity ID, 
which in this case needs to be stored as additional information during the enrollment 
process. The classification can then be performed for example by some distance 
measurement and comparison to a given threshold T. On the other hand, for verifica-
tion based on crypthographic hashes (e.g. message authentication codes, MAC) the 
reference hash and the hash generated for the currently presented data have to be 
identical, if and only if the hashes generated based on identical data. 

In this paper we study the performance of the Biometric Hash algorithm with re-
gard to both, verification mode and hash generation mode, based on different setups, 
i.e. four different semantics and pair wise multi-semantic fusion. 

3   New Performance Measures for Biometric Hashing 

Based on the biometric data obtained, a hash generation method aims to generate 
identical hashes from data of the same person and/or different hashes from data of 
different users, respectively. In order to provide a measure for the degree of the  
reproducibility and/or false generation of such hashes, we suggest the Hamming Dis-
tance ([10]) as already shown in [9] and [7]. In context of the comparison of two bio-
metric hashes b and b’, the Hamming Distance measure determines the number of 
positions, where the two hashes are different and returns a value between 0 and the 
number of elements.  
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In equation (1), bi and b’i are the corresponding elements of vectors b and b’ at in-
dex i. The component-wise comparison of bi and b’i yields 0, if the two elements are 
equal and 1 otherwise. Then the Hamming Distance between the hashes b and b’ is 
the sum of the results of all single comparisons.  

Derived from the properties of cryptographic hashes, error rates to estimate the per-
formance of biometric hash algorithms should be considered in the reproduction and 
the collision in addition to FRR, FAR and EER. In our Hamming Distance based his-
togram analysis, we compare all generated biometric hashes of each person to each 
other hash of the same person to calculate the reproducibility rate (RR). Therefore,  
a Hamming Distance hd of 0 is logged as a match, while any hd > 0 is logged as a 
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non-match. Then, the Reproducibility Rate is the quotient of the number of matches 
by the number of comparisons. The collision rate (CR) is determined by the compari-
son of each single person’s biometric hashes with the hashes of all other users. For the 
CR, a Hamming Distance of 0 is logged as a collision and all distances higher than 0 
are logged as non-collision. The CR is calculated by the division of the number of 
collisions by the number of comparisons. In the ideal case, each comparison between 
hashes of the same person and semantic should be result in hd=0, while the compari-
son between hashes of any two different persons should yield hd>0. In order to refer 
to reproducibility requirement, the point of interest in the histogram is a Hamming 
Distance value of 0. This means for RR, only the identical reproductions of hashes of 
the corresponding person are considered, while for the CR only identical generations 
of hashes of non identical persons are examined. However, for the optimization proc-
ess of a biometric algorithm, the entire Hamming Distance based distribution should 
be taken in consideration. In order to have an indicator of the trade-off relation be-
tween RR and CR, an additional measure is introduced here: the collision reproduci-
bility ratio (CRR) as result of the division of CR by RR. Since one aim of biometric 
hashing is to reproduce hashes of each person with a high degree, while hashes of 
different persons should be different, the CRR should be very small. 

4   Multi-semantic Hash Fusion Approach 

In this section we present a new biometric fusion strategy based on the pair wise 
combination of the biometric hash vectors of two semantic classes. In the context of 
biometric handwriting, semantics are alternative written contents in addition to the 
signature. Semantics can be based on the additional factors of individuality, creativity 
and/or secret knowledge, e.g. by using pass phrases, numbers or sketches. In [9], 
Vielhauer shows that the usage of such alternative contents may lead to similar results 
as the usage of the signature in context of online handwriting based authentication 
performance. Based on the number of biometric components involved in the fusion 
process, Ross et al. differentiate in [11] between the following five scenarios for 
automatic biometric fusion: multi-sensor, multi-algorithmic, multi-instance, multi-
sample and multi-modal systems. Since the fusion proposed in this paper is executed 
on the feature extraction level in the hash domain based on different semantics, it is 
called multi-semantic hash fusion. It can be assigned to the multi-instance stage of the 
scheme suggested by Ross et al. 

The first step is the data acquisition of two semantics, which form the input for the 
second step, the hash generation. In this process step, the statistical feature vector is 
calculated from raw data of each semantic. Then, biometric hash vectors are derived 
from the semantics’ statistical values, as described in the previous section. Although, 
the tolerance factor TF used for hash generation is identical for both semantics 
(TF=3), it is also feasible to tune the TF separately in dependency on corresponding 
semantic to optimize the fusion result. The global tolerance vector TV is determined 
globally based on disjoint user sets of the corresponding semantics. Thus, for both, 
statistical feature vectors and biometric hash vectors, the dimensionality is k. The 
fusion of the two hashes is the last process step, which is carried out as concatenation 
of both hashes and leads to a hash vector’s dimensionality of 2*k.  
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5   Evaluation 

This section firstly describes the test data used in our evaluation. Following, our 
methodologies are presented, which are used to determine the results of biometric 
handwriting verification as well as biometric hash generation. Finally, the results for 
both, verification and hashing are presented and discussed.  

5.1   Evaluation Database 

The entire test set is based on 84 users, each of them having donated 10 handwriting 
samples for four different semantics (total of 3,440 samples). The PIN is given as a 
sequence of the five digits ‘77993’. Using this semantic, the individual style of writ-
ing plays a more important role than the content, since all test subject write the same 
numbers. The semantic Place represents the individual answer to the question “Where 
are you from?”, written by each test person. This answer includes individual knowl-
edge in a certain degree which, however, is not absolutely secret. We use the semantic 
Pseudonym as anonymous substitution of the individual signature, due to the fact that 
most of the test subjects refrained from donating their original signature due to pri-
vacy concerns. The Pseudonym is a name freely chosen by the writer, which had be 
trained several times before the acquisition. The freely chosen Symbol holds individ-
ual creative characteristics and additionally provides a knowledge based component 
in form of the sketched object. 

In order to determine a global tolerance vector TV as hash generation parameter 
and to carry out the biometric error rate analysis and the Hamming Distance histo-
gram analysis, a training set (hereafter set T) of 15 users and an evaluation set (hereaf-
ter set E) of 69 users are extracted from the entire set of 84 persons. Both sets are 
entirely disjoint with respect to the subjects and structured as follows: From the 10 
handwriting samples D=D1,…,D10 of each person and each semantic, the first 5 sam-
ples D1,…,D5 are taken to create 5 sets, using a leave-one-out strategy. This means a 
combination of 5 choose 4, i.e. 5 different sets are created, containing 4 handwriting 
samples each. Each of the 5 sets is used to create a user dependent interval matrix 
(IMID) and consequently, we yield reference data Ri=(ID, IMi,ID) with i=1,…,5. Based 
on these interval matrices and the remaining samples D6,…,D10, 5 biometric hashes 
are created for each user of set T and set E respectively. The determination of the 
tolerance vector TV is conducted globally, based on all users of set T, whereas the 
biometric error rate analysis and a Hamming Distance based histogram analysis are 
carried out on disjoint set E. 

5.2   Evaluation Methodology 

In this paper, we use the equal error rate (EER) to show the verification performance 
of the reference algorithm in comparison to the reproducibility performance of bio-
metric hashes based on dynamic handwriting. For the latter evaluation, we analyze the 
Biometric Hash algorithm (see section 2.2) by using the new measurements Repro-
ducibility Rate (RR), Collision Rate (CR) and Collision Reproducibility Ratio (CRR) 
to compare the reference and current hashes as described in section 3. 
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Note that for the evaluation of the multi-semantic fusion, we assume that there is 
no temporal dependence between semantic 1 and semantic 2 (i.e. EER, RR, CR or 
CRR of fusion of semantic 1 and semantic 2 is equal to EER, RR, CR or CRR of fu-
sion of semantic 2 and semantic 1). Thus, the outcome of the fusion is symmetric with 
respect to the sequence semantics taken into account, and results to the triangular 
layout of Table 1 and Table 2. 

In our previous work, we optimized the tolerance factors TF for verification as well 
as for hash generation in a certain degree. We observed, that for verification the best 
integer TF is 1, while for hash generation TF=3 was relatively good. Thus, we use in 
this initial study these both values for the corresponding evaluations. The hash gen-
eration for both applications is also based on a global TV determined on a disjoint set 
of users per semantic. However, it is also possible to use alternative parameterizations 
for TF and TV to optimize both, verification and hash generation performance. 

5.3   Results 

This subsection describes the results of the verification and the hash reproducibility. 
The corresponding tests are carried out on the single semantics as well as on their pair 
wise fusion. In tables 1 and 2 the best single results are printed in bold, while the best 
fusion results for EER, RR, CR and CRR are marked with a gray background. 

 

Biometric Error Rate Analysis. Table 1 shows the results of the biometric error rate 
analysis. While the second column (single) presents the EERs of the individual se-
mantics, the last three columns are showing the pair wise fusion results. The fusion is 
carried out on the matching score level and is based on a simple mean rule. This strat-
egy weights the scores of the two fusion components involved with the same value 
(0.5) and summates the results to a final fused score. For the verification, the best 
single-modal result with respect to the EER is determined for the Symbol with 
EER=3.199%. The worst EER of 4.969% is based on semantic Pseudonym. Another 
observation from Table 1 is that all pair wise fusion combinations improve the results 
determined by the corresponding semantics. Here the lowest EER of 1.143% is calcu-
lated based on the combination of Place and Symbol. 

Table 1. Equal error rates in % per semantic class and their pair wise fusion (TF=1) 

  Multi-semantic fusion 
 single Symbol Pseudonym Place 
Semantic EER EER EER EER 
PIN 4.763 1.719 2.249 1.982 
Place 3.541 1.143 1.632 - 
Pseudonym 4.969 1.382 -  
Symbol 3.199 -   

 
Hamming Distance based Histogram Analysis. The results of the Hamming Dis-
tance based histogram analysis for single semantics as well as for their pair wise  
fusion are presented in Table 2. In the rows of Table 1 labeled with RR the reproduci-
bility rate of genuine hashes by the corresponding genuine users is shown in depend-
ency of the semantic class. The rows labeled with CR are showing the collision rate, 
while the CRR rows present the collision reproducibility ratio. 
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Table 2. Reproducibility and collision rate in % and collision reproducibility ratio for single 
semantics and pair wise semantic hash fusion (TF=3) 

single Semantic 2 Semantic 1 Measurement 
results Symbol Pseudonym Place 

RR 76.580 60.000 55.304 55.536 
CR 5,818 0.346 0.685 1.207 PIN 

CRR 0.076 0.006 0.012 0.217 
RR 72.116 57.217 52.696  
CR 5.115 0.319 0.484 - Place 

CRR 0.070 0.006 0.009  
RR 70.551 56.290   
CR 4.923 0.223 -  Pseudonym 

CRR 0.070 0.004   
RR 77.101    
CR 2.392 -   Symbol 

CRR 0.031    
 

 
As shown in the third column of Table 2, the best reproducibility rate of genuine 

hashes is calculated for Symbol with a RR of 77.101%. A similar result is calculated 
based on the PIN with RR=76.580%. However, since PIN is the given sequence of the 
digits ‘77993’ written by all persons, the collision rate (CR=5.818%) is the highest. 
Thus, also the collision reproducibility ratio for PIN (CRR=0.076) is higher than the 
CRRs for the other semantics. From the point of view to choose the semantic having 
the best ratio between RR and CR, the semantic Symbol should be taken in considera-
tion (CRR=0.031).  

Since the multi-semantic hash fusion is carried out as simple concatenation (see 
section 4) of two hashes based on different semantics, the reproducibility of the new 
fused hash depends only on the individual reproducibility of the two hashes involved. 
Based on this fact, it is obvious that the RR of the fused hashes cannot be higher than 
the worst individual reproducibility rate of the two hashes used for the fusion. Table 2 
shows also the results of the pair wise multi-semantic hash fusion. The intersections 
of rows and columns of the different semantics are showing the corresponding fusion 
results for reproducibility rate (RR), collision rate (CR) and collision reproducibility 
ratio (CRR). As assumed, a general observation is, that the fusion results for the re-
producibility rate are worse than the results obtained based on the single semantics 
(see second column of Table 2). For example, the best fusion result is based on the 
concatenation of the hashes for PIN and Symbol where the RR is equal to 60%, while 
the single results amount 76.58% for PIN and 77.101% for Symbol, respectively. This 
corresponds to a relative degradation of approx. 22% in comparison to the best single 
result determined for the Symbol. On the other hand, the collision rates are signifi-
cantly lower than those of the single semantics involved. Here the relative decline lies 
between 77% and 90%. The best CR of 0.223% was determined for the fusion of 
semantics Pseudonym and Symbol, while the corresponding RR amounts 56.29%. The 
greatest improvement of the fusion we see in the decrease of the CRR. In case of the 
best fused RR of 60% the CRR is reduced to one fifth (0.006) of the CRR of the best 
single result calculated for symbol (0.031). Thus, the fusion may provide the opportu-
nity to reach a higher RR at an acceptable CR. 
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The results of biometric error rate as well as Hamming Distance based histogram 
analysis show that there is a dependency between EER and/or RR and CR, and the 
written content. Based on these results it can be stated, that the choice of a semantic 
depends on the requirements of the verification and/or hashing application. It can be 
decided on best equal error rate performance or on best reproducibility, best collision 
resistance as well as on the best ratio between them. 

6   Conclusions 

In this paper, we suggest the analysis of the biometric hash reproducibility and colli-
sion rates based on the Hamming Distance, in addition to the typical verification error 
rates. The reproducibility rate (RR) shows, how is the performance of a hash genera-
tion algorithm with respect to generate stable has values for the same persons and the 
same written content. The collision rate (CR) is a measure for the probability of gen-
eration of biometric hashes by non-authentic users. Further, the collision reproducibil-
ity ratio (CRR), as third introduced measure, indicates the tradeoff relation between 
CR and RR. In order to find a suitable working point for a biometric hash generation 
algorithm for practical applications, one solution can be to minimize the CRR. Fur-
ther, we have suggested a novel concept in the domain of multi-biometrics: Multi-
semantic fusion of biometric hashes generated using different writing contents. 

In the experimental evaluation, we have practically shown the feasibility of the 
new measurements based on online handwriting biometrics. On one side, the evalua-
tion of the multi-semantic hash fusion has shown that the concatenation of two hashes 
using different semantics leads to a significantly worse reproducibility rate than the 
individual semantics. Here the best fusion result is calculated for the combination of 
PIN and Symbol (RR=60%), while the individual RRs for PIN and Symbol amount 
76.580% and 77.101%, respectively. On the other side, a significant improvement of 
the collision rate can be observed. The best CR of 0.223% is determined based on the 
semantics Pseudonym and Symbol. This leads to the best collision reproducibility 
ratio of the entire evaluation (CRR=0.004) and this significantly improved trade-off 
between RR and CR provides potential for optimized parameterization towards better 
RR at acceptable CR level. 

To do so, the parameterization can be adjusted to any user registered in the data-
base by optimizing user specific tolerance vectors, which are used to calculate the 
mapping interval of the Biometric Hash algorithm. In order to improve the RR even 
more, other methods have to be studied, e.g. alternative mapping functions or error 
correction mechanisms. In this case, one has also to keep track of the expansion of CR 
as counterpart of RR. Finally, although in this paper we have focused on biometric 
hashes for handwriting, it appears quite possible to apply the methodology to hashes 
generated based on other biometric modalities in the future. 
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Abstract. To implement a biometric authentication scheme, the tem-
plates of a group of people are stored in the database (DB) under the
names of these people. Some person presents a name, and the scheme
compares the template of this person and the template associated with
the claimed person to accept or reject their identity [1]. The templates of
people stored in the DB should be protected against attacks for discovery
the biometrics and attacks for successful passing through the verification
test. The authentication algorithm developed by Juels and Wattenberg
[2] is a possible solution to the problem. However, implementations of
this algorithm for practical data require generalized versions of the algo-
rithm and their analysis. We introduce a mathematical model for DNA
measurements and present such a generalization. Some numerical results
illustrate the correction of errors for the DNA measurements of a le-
gitimate user and protection of templates against attacks for successful
passing the verification stage by an attacker.

1 An Additive Block Coding Scheme

An additive block coding scheme proposed in [2] can be presented as follows
(see Figure 1). Let C be a set consisting of M different binary vectors of length
n (a binary code of length n for M messages). The entries of the set C are
called key codewords. One of the key codewords x ∈ C is chosen at random
with probability 1/M. This codeword is added modulo 2 to the binary vector
b generated by a biometrical source, and the vector y = x ⊕ b is stored in the
DB under the name of the person whose biometrics is expressed by the vector
b. Furthermore, the value of a one–way hash function Hash at the vector x (a
one-to-one function whose value can be easily computed, while the inversion is a
difficult problem) is also stored in the DB. Having received another binary vector
b′ and the claimed name, the verifier finds the key codeword x̂ ∈ C located at
the minimum Hamming distance from the vector z = y ⊕ b′. The basis for the
algorithm is the observation.

y = x⊕ b
b′ = b⊕ e

}
⇒ x ⊕ e = z.
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fier =?
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Fig. 1. Verification of a person using an additive block coding scheme with a binary
code

In particular, if the number of positions where the vectors b and b′ differ does
not exceed �(dC − 1)/2�, where dC is the minimum distance of the code C, then
the key codeword used at the enrollment stage will be found. Then Hash(x̂)
is equal to Hash(x) and the identity claim is accepted. Otherwise, the claim is
rejected.

Notice that the verification scheme in Figure 1 can be represented as trans-
mission of the key codeword x over two parallel channels, because

y = x ⊕ b
b′ = b⊕ e

}
⇒

{
x ⊕ b = y
x ⊕ e = z.

Thus, we say that the verifier receives a pair of vectors (x⊕b,x⊕e) (see Figure 2),
while the attacker receives only the first component and the JW decoder analyzes
only the second component of that pair. The transformations x → y and x → z
can be interpreted as transmissions of the key codeword over the biometric and
the observation channels, respectively.

The processing of biometric data is illustrated in Table 1, where we assume
that n = 6 and assign a binary block code C for M = 8 messages. Let 011011 be
the input vector and let 011110 be the chosen key codeword. Then the vector
000101 is stored in the DB. The attacker forms the set of candidates for the
biometric vectors as 000101⊕C and searches for the vector having the maximum
probability computed over the ensemble Prbio . If 111011 is the noisy observation
of the biometric vector, then the JW decoder forms the set 000101⊕111011⊕C,
considers it as the set of possible observation noise vectors, and searches for the
vector having the maximum probability computed over the ensemble Prerr . The
verifier analyzes the pair of these sets and searches for the pair of vectors having
the maximum probability computed over the ensemble Prbio ×Prerr .
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Fig. 2. Representation of the additive block coding as a scheme where a key codeword
x is received under the biometric noise b and the observation noise e

Table 1. Example of processing data with the additive block coding scheme for n = 6
and M = 8

C −→ y ⊕ C z ⊕ C
000000 x = 011110 000101 111110
001011 b = 011011 001110 110101
010101 y = x ⊕ b 010000 101011
011110 = 000101 011011 100000
100110 b′ = 111011 100011 011000
101101 z = b′ ⊕ y 101011 010011
110011 = 111110 110110 001101
111000 111101 000110

We will assume that particular binary vectors b and e are chosen as the
biometric and the observation noise vectors according to the probability distri-
butions (PDs)(

Pr
bio

{
B = b

}
, b ∈ {0, 1}n

)
,
(

Pr
err

{
E = e

}
, e ∈ {0, 1}n

)
.

Let xbio, xerr, and xbio,err denote results of the decoding when the vectors y, z,
and the pair of vectors (y, z) are available. One can easily check that the maxi-
mum probabilities of correct decoding are attained by the maximum a posteriori
probability decoding rules, i.e., the optimum estimates of the key codeword sat-
isfy the equalities

Pr
bio

{
B = xbio ⊕ y

}
= max

x∈C
Pr
bio

{
B = x⊕ y

}
,
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Pr
err

{
E = xerr ⊕ z

}
= max

x∈C
Pr
err

{
E = x⊕ z

}
,

and

Pr
bio

{
B = xbio,err ⊕ y

}
Pr
err

{
E = xbio,err ⊕ z

}
=

max
x∈C

[
Pr
bio

{
B = x ⊕ y

}
Pr
err

{
E = x⊕ z

}]
.

Then the probabilities that the decoded codewords coincide with the transmitted
key codewords can be expressed as

Λbio =
1
M

∑
y

max
x∈C

Pr
bio

{
B = x ⊕ y

}
,

Λerr =
1
M

∑
z

max
x∈C

Pr
err

{
E = x ⊕ z

}
,

Λbio,err =
1
M

∑
y,z

max
x∈C

[
Pr
bio

{
B = x ⊕ y

}
Pr
err

{
E = x ⊕ z

} ]
.

2 Structure of the DNA Data and Mathematical Model

The most common DNA variations are Short Tandem Repeats (STR): arrays
of 5 to 50 copies (repeats) of the same pattern (the motif) of 2 to 6 pairs. As
the number of repeats of the motif highly varies among individuals, it can be
effectively used for identification of individuals. The human genome contains
several 100,000 STR loci, i.e., physical positions in the DNA sequence where
an STR is present. An individual variant of an STR is called allele. Alleles
are denoted by the number of repeats of the motif. The genotype of a locus
comprises both the maternal and the paternal allele. However, without additional
information, one cannot determine which allele resides on the paternal or the
maternal chromosome. If the measured numbers are equal to each other, then the
genotype is called homozygous. Otherwise, it is called heterozygous. The STR
measurement errors are usually classified into three groups: (1) allelic drop–in,
when in a homozygous genotype, an additional allele is erroneously included,
e.g. genotype (10,10) is measured as (10,12); (2) allelic drop–out, when an allele
of a heterozygous genotype is missing, e.g. genotype (7,9) is measured as (7,7);
(3) allelic shift, when an allele is measured with a wrong repeat number, e.g.
genotype (10,12) is measured as (10,13).

The points above can be formalized as follows. Suppose that there are n
sources. Let the t-th source generate a pair of integers according to the PD

Pr
DNA

{
(At,1, At,2) = (at,1, at,2)

}
= πt(at,1)πt(at,2),

where at,1, at,2 ∈ {ct, . . . , ct +kt −1} and ct, kt are given positive integers. Thus,
we assume that At,1 and At,2 are independent random variables that contain
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information about the number of repeats of the t-th motif in the maternal and
the paternal allele. We also assume that (At,1, At,2), t = 1, . . . , n, are mutually
independent pairs of random variables, i.e.,

Pr
DNA

{
(A1, A2) = (a1,a2)

}
=

n∏
t=1

Pr
DNA

{
(At,1, At,2) = (at,1, at,2)

}
,

where A� = (A1,�, . . . , An,�) and a� = (a1,�, . . . , an,�), � = 1, 2.
Let us fix a t ∈ {1, . . . , n} and denote

Pt
�
=
{

s = (i, j) : i, j ∈ {ct, . . . , ct + kt − 1}, j ≥ i
}
.

Then the PD of a pair of random variables

St
�
=
(

min{At,1, At,2}, max{At,1, At,2}
)
,

which represents the outcome of the t-th measurement, can expressed as

Pr
DNA

{
St = (i, j)

}
= ωt(i, j),

where ωt(i, j)
�
= π2

t (i), if j = i, and ωt(i, j)
�
= 2πt(i)πt(j), if j �= i. Denote

ωt
�
= (ωt(i, j), (i, j) ∈ Pt ) and

G(ωt)
�
= − log max

(i,j)∈Pt

ωt(i, j),

H(ωt)
�
= −

∑
(i,j)∈Pt

ωt(i, j) log ωt(i, j),

p(ωt)
�
=

ct+kt−1∑
i=ct

ωt(i, i),

h(ωt)
�
= −(1 − p(ωt)) log(1 − p(ωt)) − p(ωt) log p(ωt).

One can easily see that the best guess of the output of the t-th source is a pair
(i∗t , j

∗
t ) such that ωt(i∗t , j

∗
t ) ≥ ωt(i, j) for all (i, j) ∈ Pt. Therefore, 2−G(ωt) is the

probability that the guess is correct. The value of p(ωt) is the probability that
the genotype is homozygous, H(ωt) is the entropy of the PD ωt, and h(ωt) is
the entropy of the PD (1 − p(ωt), p(ωt)).

Let us assume that qt
�
= | Pt | = kt(kt + 1)/2 values ωt(i, j), (i, j) ∈ Pt, are

different and introduce two transformations of a pair of measurements (i, j) ∈ Pt.
(a) Let i = j imply β(i, j) = 0 and let i �= j imply β(i, j) = 1. (b) Given an
integer q ≥ qt, let βq(i, j) = b if and only if there are b pairs (i′, j′) ∈ Pt such
that ωt(i′, j′) > ωt(i, j). In particular, βq(i∗t , j

∗
t ) = 0.

We will denote the vector of measurements available to the scheme at the en-
rollment stage by s = ((i1, j1), . . . , (in, jn)). The transformations of this vector
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will be denoted by β(s) = (β(i1, j1), . . . , β(in, jn)) and βq(s) = (βq(i1, j1), . . . ,
βq(in, jn)). Similar notations will be used for the vector s′ = ((i′1, j

′
1), . . . , (i

′
n, j′n))

available to the scheme at the verification stage.
Example (the quantities below describe the TH01 allele in Table 2). Let ct = 6,
kt = 4, and (π(6), . . . , π(9)) = (0.23, 0.19, 0.09, 0.49). Then

[
πt(i)πt(j)

]
i,j=6,...,9

=

j = 6 j = 7 j = 8 j = 9
i = 6 .0529 .0437 .0207 .1127
i = 7 .0437 .0361 .0171 .0931
i = 8 .0207 .0171 .0081 .0441
i = 9 .1127 .0931 .0441 .2401

To construct the PD ωt, we transform this matrix to the right triangular matrix
below. The entries above the diagonal are doubled, and the entries below the
diagonal are replaced with the zeroes. The sum of all entries of the i-th row is
equal to the probability that min{At,1, At,2} = i and the sum of all entries of
the j-th column is equal to the probability that max{At,1, At,2} = j (these sums
are denoted by ωt,min(i) and ωt,max(j)),

[
ωt(i, j)

]
i,j=6,...,9

j≥i

=

j = 6 j = 7 j = 8 j = 9 ωt,min(i)
i = 6 .0529 .0874 .0414 .2254 .4071
i = 7 .0361 .0342 .1862 .2565
i = 8 .0081 .0882 .0963
i = 9 .2401 .2401

ωt,max(j) .0529 .1235 .0837 .7399

Reading the entries of this matrix in the decreasing order of their values brings
the following table,

i, j 9, 9 6, 9 7, 9 8, 9 6, 7 6, 6 6, 8 7, 7 7, 8 8, 8
β(i, j) 1 0 0 0 0 1 0 1 0 1

βq(i, j) 0 1 2 3 4 5 6 7 8 9
ωt(i, j) .2401 .2254 .1862 .0882 .0874 .0529 .0414 .0361 .0342 .0081
G(ωt) − log .2401 = 2.07
p(ωt) .2401 + .0529 + .0361 + .0081 = .3372

Some parameters of the PDs that were under considerations in the BioKey–
STR project [3] are given in Table 2. We conclude that results of the DNA mea-
surements can be represented by a binary vector of length �log(q1 . . . qn)� = 129
bits. However the PD over these vectors is non–uniform and (roughly speak-
ing) only 109 bits carry information about the measurements. If an attacker
is supposed to guess this vector, then the best guess is the vector of pairs
s∗ = ((i∗1, j

∗
1 ), . . . , (i∗n, j∗n)). By the construction of the βq transformation, βq(s

∗)
is the all-zero vector. The probability that the guess is correct is equal to 2−76.8.
If the vector of n pairs of integers is transformed to a binary vector of length
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Table 2. Some characteristics of the PDs ω1, . . . , ωn that describe the DNA measure-
ments for n = 28

t Name log qt H(ωt) G(ωt) p(ωt) h(ωt)
1 D8S1179 4.39 4.08 3.01 0.20 0.73
2 D3S1358 3.91 3.71 2.87 0.22 0.76
3 VWA 4.39 4.13 3.12 0.19 0.71
4 D7S820 4.39 4.07 3.25 0.19 0.71
5 ACTBP2 7.71 7.43 6.13 0.06 0.32
6 D7S820 4.81 4.24 3.31 0.19 0.69
7 FGA 5.49 4.92 3.54 0.15 0.61
8 D21S11 4.81 4.13 3.01 0.20 0.73
9 D18S51 5.78 5.28 4.43 0.13 0.55

10 D19S433 4.39 3.59 2.33 0.26 0.82
11 D13S317 4.81 4.15 2.56 0.22 0.75
12 TH01 3.32 2.85 2.07 0.34 0.92
13 D2S138 6.04 5.60 4.23 0.12 0.52
14 D16S539 4.81 3.78 2.25 0.25 0.81
15 D5S818 3.91 3.11 1.81 0.31 0.89
16 TPOX 3.91 2.91 1.79 0.37 0.95
17 CF1PO 3.91 3.16 2.16 0.28 0.86
18 D8S1179 5.49 4.49 3.15 0.19 0.69
19 VWA-1 4.39 4.13 3.12 0.19 0.71
20 PentaD 5.17 4.32 3.13 0.19 0.70
21 PentaE 6.91 5.87 4.02 0.11 0.51
22 DYS390 4.39 3.24 2.06 0.30 0.88
23 DYS429 3.91 2.97 1.78 0.33 0.91
24 DYS437 2.58 2.26 1.58 0.40 0.97
25 DYS391 3.32 1.90 1.11 0.47 1.00
26 DYS385 5.17 3.61 1.72 0.34 0.93
27 DYS389I 2.58 2.01 1.18 0.50 1.00
28 DYS389II 3.91 3.14 2.04 0.31 0.89

P
128.6 109.1 76.8 7.01 21.5

n containing ones at positions where the genotype is homozygous, then the ex-
pected weight of the vector can be computed as p(ω1) + . . . + p(ωn) = 7.01,
because the weight is the sum of n independent binary random variables where
the t-th variable takes value 1 with probability p(ωt). The difference between the
entropies H(ωt) − h(ωt) characterizes the loss of data for the β transformation
of presented measurements.

3 Verification of a Person Using the DNA Measurements

Additive block coding schemes are oriented to the correction of certain types of
measurement errors with simultaneous hiding biometric data from an attacker.
If only the allelic drop–in/out errors are possible, then correction of errors means
the transformation of the binary vector β(s′) to the binary vector β(s), where
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s and s′ are biometric vectors presented to the scheme at the enrollment and
the verification stages, respectively. This procedure can be organized using an
additive block coding scheme with a binary code of length n. However, the β
transformation brings an essential loss of input data, and the verifier cannot
make a reliable acceptance decision.

Notice that the βq transformation is lossless and propose the use of an additive
block coding scheme with a q-ary code Cq, where q is chosen in such a way that
q1, . . . , qn ≤ q. All the vectors in Figures 1, 2 become q-ary vectors, and ⊕
has to be understood as the component-wise addition modulo q. To distinguish
between these vectors and binary vectors, we attach the index q and introduce
the following translation to parallel channels:

yq = xq ⊕ bq

b′
q = bq ⊕ eq

}
⇒

{
xq ⊕ bq = yq

xq � eq = zq

where zq = yq �b′
q and � denotes the component-wise difference modulo q. Our

data processing algorithm is presented below.

Preprocessing. Assign a binary code C for M messages and a q-ary code Cq

for Mq messages. Both codes have length n.

Enrollment (input data are specified by the vector s).

(0) Construct the vectors β(s) and βq(s).
(1) Choose a binary key codeword x ∈ C. Store Hash(x) and y = x ⊕ β(s) in

the DB.
(2) Choose a q-ary key codeword xq ∈ Cq. Store Hash(xq) and yq = xq ⊕ βq(s)

in the DB.

Verification (input data are specified by the vector s′ and content of the DB).

(0) Construct the vectors β(s′) and βq(s′).
(1) Consider (y,y ⊕ β(s′)) as the pair of received words and decode the binary

key codeword as x̂. If Hash(x̂) �= Hash(x), then output “No” and terminate.
(2) Consider (yq ,yq �βq(s′)) as the pair of received words and decode the q-ary

key codeword as x̂q. If Hash(x̂q) �= Hash(xq), then output “No”. Otherwise,
output “Yes”.

The formal description of biometric sources for the 1-st and the 2-nd steps
are as follows: for all b ∈ {0, 1}n and bq ∈ {0, . . . , q − 1}n,

Pr
bio

{
B = b

}
=

n∏
t=1

Pr
DNA

{
β(St) = bt

}
,

Pr
bio,q

{
Bq = bq

}
=

n∏
t=1

Pr
DNA

{
βq(St) = bt,q

}
.

Suppose that the noise of observations is specified is such a way that, for all
e ∈ {0, 1}n and eq ∈ {0, . . . , q − 1}n,

Pr
err

{
E = e

}
=

n∏
t=1

{
1 − ε, if et = 0,
ε, if et = 1,
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Pr
err,q

{
E = eq

}
=

n∏
t=1

{
1 − εq, if et,q = 0,
εq/(q − 1), if et,q ∈ {1, . . . , q − 1},

where ε and εq are given.
Let us estimate the decoding error probability at the output of the JW de-

coders. One can easily see that if the decoder tries to find a key codeword at
distance at most �(dC − 1)/2� from the received vector y and outputs an error
when it is not possible, then the probability of correct decoding is expressed as

Λ̂err(ε) =
�(dC−1)/2	∑

ν=0

(
n

ν

)
(1 − ε)n−νεν .

The decoding at the 2-nd step can be organized as a procedure that depends
on the results of the 1-st step. Namely, the decoder can replace symbols of the
vector yq located at positions where the vector ê = y ⊕ x̂ contains 1’s with
erasures and decode the resulting vector ŷq. One can easily see that an estimate
of the probability of correct decoding can be expressed as

Λ̂∗
err(ε, εq) =

�(dC−1)/2	∑
ν=0

(
n

ν

)
(1 − ε)n−νενΛ̂err,q(εq|wt(ê)),

where

Λ̂err,q(εq|wt(ê))
�
=

�(dCq−wt(ê)−1)/2	∑
τ=0

(
n − wt(ê)

τ

)
(1 − εq)n−wt(ê)−τετ

q

is the estimate of the probability of correct conditional decoding at the 2-nd
step. Some numerical results are given in Table 3.

Table 3. Estimates of the decoding error probability for n = 28 and dCq = 5

1 − Λ̂err(ε) 1 − Λ̂∗
err(ε, εq = .001)

ε dC = 5 dC = 7 dC = 9 dC = 5 dC = 7 dC = 9
.001 3.2e-06 2.0e-08 9.6e-11 1.6e-05 1.3e-05 1.3e-05
.002 2.5e-05 3.2e-07 3.0e-09 4.7e-05 2.3e-05 2.2e-05
.003 8.4e-05 1.6e-06 2.3e-08 1.1e-04 3.4e-05 3.3e-05
.004 1.9e-04 4.9e-06 9.3e-08 2.3e-04 4.9e-05 4.4e-05
.005 3.7e-04 1.2e-05 2.8e-07 4.2e-04 6.8e-05 5.7e-05

Considerations presented in [4] show that the performance of the verifier, who
analyzes transmitted key codeword both under the biometric and the observation
noise, corresponds to the performance of the JW decoder for the channel having
crossover probability ε′ = 2ε/3, i.e., Λ̂bio,err(p, ε) = Λ̂err(2ε/3). The value of
parameter ε that can be of interest for practical systems is ε = 0.005, and the
corresponding values of the decoding error probabilities are given in Table 3 in
bold font.
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We can also prove the following upper bound on the probability of correct
decoding by the attacker,

Λ̂bio(p) ≤ 2n

M
· qn

Mq
max

s
Pr

DNA

{
S = s

}
.

In particular, if C is the code for M = 218 messages having the minimum disance
5 and C8 is the Reed–Solomon code over GF (28) for M8 = (28)24 messages having
the minimum distance 5, then Λ̂bio(p) is equal to 2−182−8(28−24)2−76.8 = 2−34.8.

A more detailed discussion of the implementation issues will be presented in
another paper.

4 Conclusion

Additive block coding schemes can bring efficient solutions to biometric problems
when the length of the auxiliary key codewords is the same as the length of
biometric vectors and there is an external randomness measured by the number
of possible key codewords. This approach is especially effective for correcting the
drop–in/out errors in the DNA measurements.
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Abstract. Security and privacy issues are considered as two of the
major concerns related to the use of biometric data for authentication
purposes. In this paper we propose two different approaches for the pro-
tection of on-line signature biometric templates. In the first one, cryp-
tographic techniques are employed to protect signature features, making
impossible to derive the original biometrics from the stored templates. In
the second one, data hiding techniques are used to design a security scal-
able authentication system, embedding some dynamic signature features
into a static representation of the signature itself. Extensive experimental
results are provided to show the effectiveness of the presented protection
methods.

1 Introduction

The most emerging technology for people authentication is biometrics. Being
based on strictly personal traits, much more difficult to be forgotten, stolen, or
forged than traditional data employed for authentication, like passwords or ID
cards, biometric-based recognition systems typically guarantee improved com-
fort and security for their users. Unfortunately, the use of biometric data in-
volves various risks not affecting other approaches: significant privacy concerns
arise since biometrics can be used, in a fraudulent scenario, to treat the user
anonymity which must be guaranteed in many real life situations [1]. Moreover,
in a scenario where biometrics can be used to grant physical or logical access,
security issues regarding the whole biometric system become of paramount im-
portance. Therefore, when designing a biometric-based recognition system, the
issues deriving from security and privacy concerns have necessarily to be care-
fully considered, trying to provide countermeasures to the possible attacks that
can be perpetrated at the vulnerable points of the system, detailed in [2].

In this paper we focus on signature templates security, presenting two different
methods for the protection of the considered biometric data. In Section 1.1 some
approaches already proposed for the protection of biometrics are discussed. Our
methods are presented in Section 2, where a user-adaptive fuzzy commitment
scheme is designed with application to on-line signature based authentication,
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and in Section 3, Section 3, where a different perspective is taken, employing
data hiding techniques to design a security scalable authentication system. An
extensive discussion on the performances of the proposed systems is given in
Section 4, while the conclusions are finally drawn in Section 5.

1.1 Biometric Template Security: State of the Art

Different solutions have been investigated to secure biometric templates. Among
them, data hiding techniques can be implemented to protect or authenticate bio-
metric data, according to two different possible scenarios: one where the informa-
tion to hide is of primary concern, in which case we speak about steganography,
and the other where the host data is of primary concern and the mark is used
to validate the host data itself, in which case we talk about watermarking. The
use of data hiding techniques for biometrics protection has already been pro-
posed in [3,4], among the others. Although cryptography and data hiding can be
properly used to generate secure template, the most promising approaches for
biometric template protection consist in the implementation of what has been
called cancelable biometrics. Originally introduced in [2], it can be roughly de-
scribed as the application of an intentional and repeatable modification to the
original biometric template, able to guarantee the properties or renewability and
security for the generated templates. A classification of the proposed protection
methods have been presented in [5], comprising two macro-categories, referred
to as Biometric Cryptosystem and Feature Transformation approach. Biometric
cryptosystems typically employ binary keys in order to secure the biometric tem-
plates. This category can be furthered divided into key binding systems, where
the key is bind to the biometric template [6], and into key generating systems,
where the key is directly generated from the biometric template [7,8]. In a feature
transformation approach, a transformation function is applied to the biometric
template, and the desired cancelable biometrics are given by the transformed
versions of the original data. It is possible to distinguish between salting ap-
proaches, where the employed transformation functions are invertible [9], and
non-invertible transform approaches, where a one-way function is applied to the
templates [10]. Considering on-line signature protection, the first proposed (key
generation) approaches have been in [11] and [12]. In [13] an adaptation of the
fuzzy vault [8] is proposed. Also the fuzzy commitment [7] (whose most estab-
lished implementation is known as Helper Data System [14]) has been employed
to provide security to the features extracted from an on-line signature [15]. A
comprehensive survey on signature template protection can be found in [16].

2 Signature-Based User Adaptive Fuzzy Commitment

In this Section a key binding scheme for the protection of on-line signature tem-
plates is presented. Basically, it is based on Juels’ proposal of fuzzy commitment
using error correcting codes [7]. The proposed approach is twofold, allowing the
system both to manage cancelable biometrics and to handle the intra-class vari-
ability exhibited by biometric signatures.
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Fig. 1. Signature-based fuzzy commitment: enrollment scheme. The acquired data are
analyzed, quantized and summed to error correcting codes.

2.1 Enrollment Stage

The proposed enrollment scheme is presented in Figure 1. During the enrollment
phase a number I of signatures are recorded for each subject s. The 95 features
detailed in [17] are then extracted from each signature, and collected in the
vectors fs

i , i = 1, · · · , I. The intra-class µs and the inter-class µ vector mean
are then estimated as µs = 1/I

∑I
i=1 fs

i , where µ = 1/S
∑S

s=1 µs, being S the
number of enrolled subjects. From the I signatures acquired from the user s, a
binary vector bs, representative of the considered P features, is then obtained
applying, to the intra-class mean vector µs, the vector µ as a threshold. A
selection of the relevant features is then performed: only subjects’ most reliable
features are selected, thus counteracting the potential instability, for the single
user, of the feature vector components. In the process of defining a reliable feature
selection, for each user s, the enrolled features vectors fs

i , with i = 1, . . . , I,
are binarized by comparisons with the inter-class mean µ and collected as row
vectors in a binary matrix Bs, with I (signature samples) rows and P (features)
columns. Then, the reliability Ls

1[p] of the p-th feature is defined as follows:

Ls
1[p] = 1 −

∑I
i=1(B

s[i, p] ⊕ bs[p])
I

, p = 1, . . . , P, (1)

where ⊕ represents the XOR operation. According to this measure, components
with a high reliability possess a high discrimination capability. In order to further
discriminate among the available features, we introduce a second level of feature
screening, according to the following reliability measure:

Ls
2[p] =

| µ[p] − µs[p] |
σs[p]

, p = 1, . . . , P, (2)

with σs[p] =
√

1
I−1

∑I
i=1

[
fs
i [p] − µs[p]

]2 being the standard deviation of the
p-th feature of subject s. A higher discriminating power is thus trusted to features
with a larger difference between µs[p] and µ[p], relative to the standard deviation
σs[p]. After the application of the reliability metrics to bs, we end up with the
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binary feature vector rs containing the P ′ most reliable components of bs. The
indexes of the most reliable feature for the user s are collected in RFs.

In order to achieve both template protection and renewability, our scheme uses
error correcting codes (BCH codes) [18]. In this paper, we propose an authenti-
cation method that provides also adaptability to the user signature variability:
this is achieved by choosing the BCH code and its ECC in such a way that,
for users characterized by a high intra-class variability, codes with higher error
correction capabilities are selected. Therefore, in the enrollment stage, an intra-
class analysis is performed as follows: once the P ′ reliable features are selected,
the matrix Rs, having I rows and P ′ columns, is obtained from Bs dropping
the non-reliable features. Then, the Hamming distances Ds

i , with i = 1, . . . , I,
between any rows of Rs and the representative vector rs are evaluated. The
average Avgs of the Ds

i values, Avgs = 1/I
∑I

i=1 Ds
i , is then used to charac-

terize the intra-class variability of the user s. Specifically, the BCH code whose
ECC is equal to the nearest integer of [Avgs + ∆ECC ], where ∆ECC is a system
parameter common to all the enrolled users, is chosen.

Finally, the binary vector rs is zero padded in order to reach the same length n
of the selected BCH codewords, resulting in the vector xs. The fuzzy commitment
FCs is then generated using a codeword cs obtained from the encoding of a
random message ms: FCs = FC(xs, cs) = xs ⊕ cs. A hashed version h(ms) of
ms, created using the SHA-256 algorithm is eventually stored.

2.2 Authentication Stage

The authentication phase follows the same steps as the enrollment stage. When
a subject claims his identity, he provides his signature, which is converted in
the features vector f̃s. Then the quantization is done using the inter-class mean
µ, thus obtaining b̃s. The reliable features r̃s are selected using RFs, and later
extended using zero padding, generating x̃s. A binary vector c̃s, representing a
possibly corrupted BCH codeword, results from the XOR operation c̃s = x̃s ⊕
FCs. The BCH decoder is selected depending on the encoder used in enrollment,
obtaining m̃s from c̃s. Finally, the SHA-256 hashed version h(m̃s) is compared
to h(ms): if both values are identical the subject is authenticated.

3 Signature Recognition System Using Data Hiding

In this Section we propose a signature-based biometric system, where data hiding
is applied to signature images in order to hide and keep secret some dynamic
signature features (which can not be derived from a still signature image) in
a static representation of the signature itself. The marked images can be used
for user authentication, letting their static characteristics being analyzed by
automatic algorithms or security attendants. When needed, the hidden dynamic
features can be extracted and used to enforce the authentication procedure.
Specifically, the fusion of static and dynamic signature features is performed
when a high security level is requested.
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3.1 Enrollment Stage

The enrollment procedure of the proposed security-scalable signature-based au-
thentication system is sketched in Figure 2, and detailed in the following. It is
worth pointing out that we use the pressure values of the signature as the host
signal where to embed the watermark, thus achieving a higher discriminative
capability for the considered signature images, with respect to the simple binary
signature images employed by conventional methods.

Both some dynamic features to be embedded in the signature image, and some
static features which will be used to perform the first level of user authentication,
are extracted during enrollment. For a given user u, the 68 static features detailed
in Table 1 are extracted from each of the I acquired signatures.

We consider both global (the first 20) and local features (the last 48), calcu-
lated by dividing each signature image, of dimension 720 × 1440 pixels, in 12
equal-sized rectangular segments [19]. Among the I signatures acquired for the
user u, a representative signature is selected to be the host image where to embed
the selected user’s dynamic features. This is accomplished taking the signature
image whose static features of Table 1 are the closest, in an Euclidean sense, to
the mean estimated from the I acquired signature.

The chosen pressure image s[i, j] undergoes a two-level wavelet decomposi-
tion. The second level subbands, s2LL[i, j], s2HL[i, j], s2LH [i, j], and s2HH [i, j],
which represent the approximation and the horizontal, the vertical, and the
diagonal detail subbands respectively, are selected for the embedding. Being
signature images typically sparse images, the subbands sγ [i, j], with γ ∈ Γ =
{2LL, 2HL, 2LH, 2HH}, are then decomposed into blocks of P × P pixels, in
order to identify the proper areas where the watermark has to be embedded: hav-
ing indicated with s

(b)
γ [i, j] the generic b-th block extracted from the subband

γ, it is selected for watermark embedding if its energy is greater than a fixed

Fig. 2. Security-scalable signature-based authentication system using data hiding. Pro-
posed enrollment scheme.

Table 1. Static features extracted from each signature image

Index Description Index Description

1 Sample Count 52-54 Height, Width and Aspect Ratio
2-3 X and Y Area 55-57 Minimum, Mean and Maximum X Position
4-15 Mean Pressure 12-segm. 58-60 Minimum, Mean and Maximum Y Position
16-27 Sample Count 12-segm. 61-65 Statistical Moment M1,1,M1,2,M2,1,M0,3,M3,0

28-51 X and Y Area 12-segm. 66-68 Minimum, Mean and Maximum Pressure Value
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Table 2. Dynamic features extracted from each signature

Index Description Assigned Bits

1 Number of the Strokes 5
2 Time Duration 7
3 Pen Up/Pen Down Ratio 8

4-5 Number of X and Y Maximums 6 + 6
6-7 Initial and Final X 10 + 10
8-9 Initial and Final Y 10 + 10

10-11 Mean Instantaneous Velocity and Acceleration Direction 10 + 10

threshold TE, that is, if the block contains a meaningful fragment of the sig-
nature. The selected blocks are then projected in the Radon-Discrete Cosine
Transform (R-DCT) domain introduced in [4]: this transformation is imple-
mented applying the finite Radon Transform (FRAT) [20] to each considered
block, and then performing on each FRAT projection sequence an energy com-
paction by means of the DCT. Formally, the R-DCT of a selected blocks

(b)
γ [i, j]

can be written as:

c(b)
γ [k, q] = ω[l]

P−1∑
l=0

r(b)
γ [k, l] cos

[
π(2l + 1)q

2P

]
, r(b)

γ [k, l] =
1√
P

∑
(i,j)∈Lk,l

s(b)
γ [i, j]

(3)
where r

(b)
γ [k, l] represents the FRAT [20], and having indicated with Lk,l the set

of points that form a line. on Z2
P .

Among the P + 1 available projections, only the sequences associated to the
two most energetic direction k1 and k2 of each block are selected to be marked.
From them, the matrix M(b)

γ is then built taking the N first components from
each sequence (without considering the DC coefficients of the projections):

M(b)
γ =

(
c
(b)
γ [k1, 1] c

(b)
γ [k1, 2] · · · c(b)

γ [k1, N ]
c
(b)
γ [k2, 1] c

(b)
γ [k2, 2] · · · c(b)

γ [k2, N ]

)
. (4)

Iterating this procedure for all the Bγ blocks selected from each subband γ,
four host vectors wγ , where the mark has to be embedded, can be generated,
considering the concatenation of the vectors originated by scanning the matrices
M(b)

γ column-wise. The watermarks are generated by extracting from each user’s
signature the dynamic features detailed in Table 2. The mean dynamic features
vector is then binarized using the bit depths given in Table 2. The so obtained
binary vector, with length equal to 92 bits, is then BCH coded to provide er-
ror resilience. We have chosen to use a (127,92) BCH code, which provides an
error correction capability (ECC) equal to 5 bits. The coded binary vector m,
consisting of 127 bits, is then decomposed into 3 separate marks m2LL, m2HL

and m2LH with dimensions equal to 32 bits, and a fourth mark m2HH with
dimension equal to 31 bits. These marks are separately embedded, by means of
QIM [21] watermarking, in the corresponding hosts wγ , γ ∈ Γ .
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3.2 Authentication Stage

In the authentication stage the user is asked to provide his signature by means of
an electronic pad. His prototype signature with the embedded signature dynamic
information can be stored either in a centralized database or in a card. When
a low-security level is required the authentication is performed on the base of
the selected static features only. Otherwise, when a high-security level is needed,
also the dynamic features embedded in the stored signature are extracted and
compared with the acquired ones. A Mahalanobis distance is used to match the
extracted features vectors, employing the standard deviations, estimated during
enrollment, of both static and dynamic features. Moreover, the best recognition
rates, as it will be outlined in Section 4.2, can be obtaining from the fusion
of both static and dynamic information. This can be accomplished using score
fusion techniques [22]. Specifically, we used the double sigmoid normalization
technique, which is robust to outliers in the score distribution, followed by sum
fusion technique, thus obtaining a single fused matching score.

4 Experimental Results

In this Section an extensive set of experimental results concerning the perfor-
mances of the proposed signature-based authentication systems are presented.
A database comprising 30 users, from each of which 50 signatures have been
acquired during a week time span, has been used to test the effectiveness of the
presented approaches. Also a test set of ten skilled forgeries for each subject,
created using a training time of ten minutes for each signature whose original
was made available to the forger, has been made available.

4.1 Experimental Results: Signature-Based Fuzzy Commitment

In this Section, the recognition performances achievable using the proposed
fuzzy commitment-based system for the protection of signature templates are
presented. For each user, I = 10 signatures have been considered during the
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Fig. 3. Proposed fuzzy commitment-based system’s performances. (a): P ′ = 50; (b)
P ′ = 80; (c) Comparison between the performances of the adaptive fuzzy commitment,
a system without protection, and the one proposed in [12].
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enrollment stage. In Figure 3(a) the system performances obtained using the
set of features indicated in [17], and considering only the (P ′ = 50) most reli-
able features for each user, are given. Two different scenarios, one where pen-
inclination-dependant features are not considered, and one the whole set with 95
features is considered, are taken into account. In order to show the effectiveness
of the proposed feature selection procedure, the system performances achieved
when (P ′ = 80) reliable features are also displayed in Figure 3(b). The results
are shown with respect to the parameter ∆ECC , used to determine the proper
error correction capability for each user. The performances have been assessed
in terms of False Rejection Rate (FRR), False Acceptance Rate (FAR) in con-
ditions of skilled forgeries (FARSF ), and FAR in conditions of random forgeries
(FARRF ), where the signatures of the users different from the analyzed one are
employed as forgeries. The achieved equal error rates (EER)s are approximately
19% (without pen-inclination features) and 16% (with pen-inclination features)
for P ′ = 50, whereas EER = 16% (without pen-inclination features) and EER
= 12% (with pen-inclination features) for P ′ = 80, considering skilled forgeries.

A performance comparison among the proposed method, the one where no
template protection is taken into account, and the one in [12], which also relies on
the processing of parametric features extracted from signatures, is also reported
in Figure 3(c). Specifically, for the unprotected approach we used a Mahalanobis
distance as feature vector matcher. The performances of the method proposed in
[12] are very close to those obtainable when no protection is applied. As far as the
proposed adaptive scheme is concerned, the obtained ROC curves differentiate
with respect to the one obtained when no protection is taken into account: better
performances in terms of FRR are obtained (lower value is equal to 7%) making
the proposed approach more suitable to forensic applications. Moreover, the best
achievable EER is obtained using our adaptive fuzzy commitment approach, and
is equal to 12%.

4.2 Experimental Results: Signature-Based Authentication System
Using Data Hiding

The performances regarding this system have been characterized in terms of both
the robustness of the employed watermarking method and of the recognition
capabilities.

Mark Extraction Performances. The performances of the proposed embed-
ding method are evaluated on the basis of the available 1500 genuine signa-
ture images. The embedding, detailed in Section 3, is performed using random
binary marks of 127 bits which, in our case, represent the BCH encoded dy-
namic features extracted from the acquired signature. Some attacks, like JPEG
compression and additive random Gaussian noise, have been performed on the
watermarked signature images for testing the robustness of the proposed em-
bedding methods. The obtained results are displayed in Figure 4, where P = 10,
TE = 5, and N = 6 have been considered as system’s parameters. Figure 4(a)
shows the obtained bit-error-rate (BER) as a function of the JPEG quality of
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the marked image, while Figure 4(b) shows the BER obtained when considering
marked images with Gaussian noise added, as a function of the PSNR between
the marked and the noisy signature images. The achieved results allow us to
properly extract the embedded features (using the error correcting capability of
the employed BCH codes) for compression with JPEG quality equal to 80, or
PSNR equal to 35.
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Fig. 4. Mark extraction performances. (a): BER vs. JPEG quality level; (b): BER vs.
marked and noisy image PSNR.

Recognition Performances. In Figure 5 the obtained recognition perfor-
mances, referred to a case where I = 10 signatures have been considered during
enrollment, are reported. Figure 5(a) and 5(b) show respectively the perfor-
mances obtained using only static features, and only dynamic features. In Figure
5(c) the results related to the fusion of static and dynamic features are displayed.
All the images we have considered were compressed with a JPEG quality value
equal to 90. The embedding is performed using P = 10 pixels, TE = 5 and N = 6.
As it is shown, the equal error rate (EER) achievable using only static features
is approximately 11% considering random forgeries, and approximately 13.17%
considering skilled forgeries. The use of dynamic features results in an EER of
approximately 7% for random forgeries and approximately 10.67% for skilled
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forgeries. Moreover, the performances obtainable from the combined system are
better than those of the individual ones, resulting in EER = approximately
8.6%, considering skilled forgeries.

5 Conclusions

In this paper we have presented two different approaches to protect a signature
biometric template. A user adaptive template protection scheme applied to sig-
nature biometrics, which stems from the fuzzy commitment scheme, is proposed.
The system is able to provide performances comparable with those achievable by
a non-protected system. Moreover, data hiding techniques are also used to design
a security scalable authentication system. Specifically, watermarking has been
employed to hide some dynamic signature features into a static representation of
the signature itself. Experimental results characterizing the system performances
in terms of both the achievable authentication capabilities, and the robustness
of the implemented watermarking technique, are reported.
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Abstract. In this contribution, the vulnerabilities of iris-based recogni-
tion systems to direct attacks are studied. A database of fake iris images
has been created from real iris of the BioSec baseline database. Iris im-
ages are printed using a commercial printer and then, presented at the iris
sensor. We use for our experiments a publicly available iris recognition
system, which some modifications to improve the iris segmentation step.
Based on results achieved on different operational scenarios, we show that
the system is vulnerable to direct attacks, pointing out the importance
of having countermeasures against this type of fraudulent actions.

Keywords: Biometrics, iris recognition, direct attacks, fake iris.

1 Introduction

The increasing interest on biometrics is related to the number of important ap-
plications where a correct assessment of identity is a crucial point. The term
biometrics refers to automatic recognition of an individual based on anatomical
(e.g., fingerprint, face, iris, hand geometry, ear, palmprint) or behavioral charac-
teristics (e.g., signature, gait, keystroke dynamics) [1]. Biometric systems have
several advantages over traditional security methods based on something that
you know (password, PIN) or something that you have (card, key, etc.). In bio-
metric systems, users do not need to remember passwords or PINs (which can be
forgotten) or to carry cards or keys (which can be stolen). Among all biometric
techniques, iris recognition has been traditionally regarded as one of the most
reliable and accurate biometric identification system available [2]. Additionally,
the iris is highly stable over a person’s lifetime and lends itself to noninvasive
identification because it is an externally visible internal organ [3].

However, in spite of these advantages, biometric systems have some draw-
backs [4]: i) the lack of secrecy (e.g. everybody knows our face or could get our
fingerprints), and ii) the fact that a biometric trait can not be replaced (if we
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forget a password we can easily generate a new one, but no new fingerprint can
be generated if an impostor “steals” it). Moreover, biometric systems are vulner-
able to external attacks which could decrease their level of security. In [5] Ratha
et al. identified and classified eight possible attack points to biometric recogni-
tion systems. These vulnerability points, depicted in Figure 1, can broadly be
divided into two main groups:

Fig. 1. Architecture of an automated biometric verification system. Possible attack
points are numbered from 1 to 8.

– Direct attacks. Here, the sensor is attacked using synthetic biometric sam-
ples, e.g. gummy fingers (point 1 in Figure 1). It is worth noting that in
this type of attacks no specific knowledge about the system is needed. Fur-
thermore, the attack is carried out in the analog domain, outside the digital
limits of the system, so digital protection mechanisms (digital signature,
watermarking, etc) cannot be used.

– Indirect attacks. This group includes all the remaining seven points of
attack identified in Figure 1. Attacks 3 and 5 might be carried out using
a Trojan Horse that bypasses the system modules. In attack 6, the system
database is manipulated. The remaining points of attack (2, 4, 7 and 8)
exploit possible weak points in the communication channels of the system.
In opposition to direct attacks, in this case the intruder needs to have some
additional information about the internal working of the system and, in most
cases, physical access to some of the application components. Most of the
works reporting indirect attacks use some type of variant of the hill climbing
technique introduced in [6].

In this work we concentrate our efforts in studying direct attacks on iris-based
verification systems. For this purpose we have built a database with synthetic
iris images generated from 50 users of the BioSec multi-modal baseline corpus
[7]. This paper is structured as follows. In Sect. 2 we detail the process followed
for the creation of the fake iris, and the database used in the experiments is
presented. The experimental protocol, some results and further discussion are
reported in Sect. 3. Conclusions are finally drawn in Sect. 4.

2 Fake Iris Database

A new iris database has been created using iris images from 50 users of the
BioSec baseline database [7]. The process is divided into three steps: i) first
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Fig. 2. Iris capture preparation

original images are preprocessed for a better afterwards quality, then ii) they
are printed on a piece of paper using a commercial printer as shown in Figure 2
(left), and lastly, iii) printed images are presented at the iris sensor, as can be
seen in Figure 2 (right), obtaining the fake image.

2.1 Fake Iris Generation Method

To correctly create a new database, it is necessary to take into account factors
affecting the quality of acquired fake images. The main variables with significant
importance for iris quality are found to be: preprocessing of original images,
printer type and paper type.

We tested two different printers: a HP Deskjet 970cxi (inkjet printer) and a HP
LaserJet 4200L (laser printer). They both give fairly good quality. On the other
hand, we observed that the quality of acquired fake images depends on the type of
paper used. Here comes the biggest range of options. All the tested types appear
in Table 1. In our experiments, the preprocessing is specially important since it
has been observed that the iris camera does not capture original images printed

Table 1. Options tested for fake iris generation

PRINTER PAPER PREPROCESSING [8]
Ink Jet White paper Histogram equalization
Laser Recycled paper Noise filtering

Photographic paper Open/close
High resolution paper Top hat

Butter paper
Cardboard
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(a) Original image - no enhancement
CAPACITIVE SENSOR

(b) Fake image - no enhancement

(c) Fake image - histogram equalization
CAPACITIVE SENSOR

(d) Fake image - noise filtering

(e) Fake image - TopHat
CAPACITIVE SENSOR

(f) Fake image - Open+TopHat

Fig. 3. Acquired fake images with different modifications using high quality paper and
inkjet printer

without previous modifications. Therefore we have tested different enhancement
methods before printing in order to acquire good quality fake images. The options
tested are also summarized in Table 1. By analyzing all the possibilities with a
small set of images, the combination that gives the best segmentation results and
therefore the best quality for the afterwards comparison has been found to be the
inkjet printer, with high resolution paper and an Open-TopHat preprocessing
step. In Figure 3, examples using different preprocessing techniques with this
kind of paper and inkjet printer are shown.

2.2 Database

The fake iris database follows the same structure of the original BioSec database.
Therefore, data for the experiments consists of 50 users × 2 eyes × 4 images × 2
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sessions = 800 fake iris images, and its corresponding real images. Acquisition
of fake images has been carried out with the same iris camera used in BioSec, a
LG IrisAccess EOU3000.

3 Experiments

3.1 Recognition System

We have used for our experiments the iris recognition system1 developed by
Libor Masek [9]. It consists of the following sequence of steps that are described
next: segmentation, normalization, encoding and matching.

For iris segmentation, the system uses a circular Hough transform in order to
detect the iris and pupil boundaries. Iris boundaries are modeled as two circles.
The system also performs an eyelids removal step. Eyelids are isolated first by
fitting a line to the upper and lower eyelid using a linear Hough transform (see
Figure 4(a) right, in which the eyelid lines correspond to the border of the black
blocks). Eyelashes detection by histogram thresholding is available in the source
code, but it is not performed in our experiments. Although eyelashes are quite
dark compared with the surrounding iris region, other iris areas are equally dark
due to the imaging conditions. Therefore, thresholding to isolate eyelashes would
also remove important iris regions. However, eyelash occlusion has been found
to be not very prominent in our database.

To improve the performance of this segmentation procedure, we pre-estimate
the iris centroid by histogram thresholding, since iris region is observed to have
the lowest gray levels of an iris image. This pre-estimation allows to reduce the
searching area of the circular Hough transform. Also, we impose three conditions
to the two circles that model iris and pupil boundaries: i) although these two
circles are known to be non-concentric, a maximum value is imposed to the
distance among their centers; ii) the two circles are not allowed to to have parts
outside the iris image; and iii) the radius of the two circles are not allowed to
be similar.

Normalization of iris regions is performed using a technique based on Daug-
man’s rubber sheet model [10]. The center of the pupil is considered as the refer-
ence point, based on which a 2D array is generated consisting of an angular-radial
mapping of the segmented iris region. In Figure 4, an example of the normaliza-
tion step is depicted.

Feature encoding is implemented by convolving the normalized iris pattern
with 1D Log-Gabor wavelets. The rows of the 2D normalized pattern are taken
as the 1D signal, each row corresponding to a circular ring on the iris region. It
uses the angular direction since maximum independence occurs in this direction.
The filtered output is then phase quantized to four levels using the Daugman
method [10], with each filtering producing two bits of data. The output of phase
quantization is a grey code, so that when going from one quadrant to another,
1 The source code can be freely downloaded from
www.csse.uwa.edu.au/ pk/ studentprojects/libor/sourcecode.html

file:www.csse.uwa.edu.au/~pk/studentprojects/libor/sourcecode.html
file:www.csse.uwa.edu.au/~pk/studentprojects/libor/sourcecode.html
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CAPACITIVE SENSOR

(a) Original image and noise image

(b) Normalized iris pattern

(c) Noise mask

Fig. 4. Examples of the normalization step

only 1 bit changes. This will minimize the number of bits disagreeing, if say
two intra-class patterns are slightly misaligned and thus will provide more ac-
curate recognition [9]. The encoding process produces a binary template and a
corresponding noise mask which represents the eyelids areas (see Figure 4 (c)).

For matching, the Hamming distance is chosen as a metric for recognition. The
Hamming distance employed incorporates the noise mask, so that only significant
bits are used in calculating the Hamming distance between two iris templates.
The modified Hamming distance formula is given by

HD =
1

N −∑N
k=1 Xnk(OR)Y nk

·
N∑

j=1

Xj(XOR)Yj(AND)Xn′
j(AND)Y n′

j

where Xj and Yj are the two bitwise templates to compare, Xnj and Y nj

are the corresponding noise masks for Xj and Yj , and N is the number of bits
represented by each template.

In order to account for rotational inconsistencies, when the Hamming distance
of two templates is calculated, one template is shifted left and right bitwise and
a number of Hamming distance values are calculated from successive shifts [10].
This method corrects for misalignments in the normalized iris pattern caused by
rotational differences during imaging. From the calculated distance values, the
lowest one is taken.

3.2 Experimental Protocol

For the experiments, each eye in the database is considered as a different user.
In this way, we have two sessions with 4 images each for 100 users (50 donors ×
2 eyes per donor).
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Two different attack scenarios are considered in the experiments and com-
pared to the system normal operation mode:

– Normal Operation Mode (NOM): both the enrollment and the test are
carried out with a real iris. This is used as the reference scenario. In this
context the FAR (False Acceptance Rate) of the system is defined as the
number of times an impostor using his own iris gains access to the system
as a genuine user, which can be understood as the robustness of the system
against a zero-effort attack. The same way, the FRR (False Rejection Rate)
denotes the number of times a genuine user is rejected by the system.

– Attack 1: both the enrollment and the test are carried out with a fake iris.
In this case the attacker enrolls to the system with the fake iris of a genuine
user and then tries to access the application also with a fake iris of the same
user. In this scenario an attack is unsuccessful (i.e. the system repels the
attack) when the impostor is not able to access the system using the fake
iris. Thus, the attack success rate (SR) in this scenario can be computed as:
SR = 1 − FRR.

– Attack 2: the enrollment is performed using a real iris, and tests are carried
out with fake iris. In this case the genuine user enrolls with his/her iris and
the attacker tries to access the application with the fake iris of the legal
user. A successful attack is accomplished when the system confuses a fake
iris with its corresponding genuine iris, i.e., SR = FAR.

In order to compute the performance of the system in the normal operation
mode, the experimental protocol is as follows. For a given user, all the images of
the first session are considered as enrolment templates. Genuine matchings are
obtained by comparing the templates to the corresponding images of the second
session from the same user. Impostor matchings are obtained by comparing
one randomly selected template of a user to a randomly selected iris image of
the second session from the remaining users. Similarly, to compute the FRR in
attack 1, all the fake images of the first session of each user are compared with
the corresponding fake images of the second session. In the attack 2 scenario,
only the impostor scores are computed matching all the 4 original samples of
each user with its 4 fake samples of the second session. In our experiments, not all
the images were segmented successfully by the recognition system. As a result,
it was not possible to use all the eye images for testing experiments.

3.3 Results

In Figure 5, several examples of fake images with correct and incorrect iris detec-
tion are plotted. The number of correctly segmented images are 792 for the orig-
inal database (99% of the 800 available) and 574 for the fake database (71.75%
of the 800). It is worth noting than more than 70% of fake images pass through
the segmentation and normalization stages, and they are input into the feature
extraction and matching stages. Thanks to the modifications included in the
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(a) Correct iris detection
CAPACITIVE SENSOR

(b) Incorrect iris detection

Fig. 5. Examples of fake images with correct iris detection (left) and incorrect iris
detection (right)

Table 2. Evaluation of the verification system to direct attacks. NOM refers to the
system normal operation mode and SR to the success rate of the attack.

NOM Attack 1 Attack 2

FAR - FRR (%) SR (%) SR (%)
0.1 - 16.84 33.57 36.89
1 - 12.37 48.02 52.44
2 - 10.78 53.03 56.96
5 - 8.87 61.19 64.56

segmentation stage (see Section 3.1), we have improved the segmentation rate
of the original system, which in our preliminary experiments was 80.56% and
38.43% for the original and fake database, respectively. It is important to con-
sider that as we try to improve the segmentation rate of true iris images, we are
also improving the segmentation rate of fake images.

In Table 2 we show the Success Rate (SR) of the direct attacks against the
recognition system at four different operating points, considering only the match-
ings between correctly segmented images. The decision threshold is fixed to reach
a FAR={0.1, 1, 2, 5} % in the normal operation mode (NOM), and then the
success rate of the two proposed attacks is computed. We observe that in all
the operating points, the system is vulnerable to the two attacks (i.e. a success
rate of about 35% or higher is observed). This is specially evident as the FAR in
the normal operation mode is increased, being successful more than half of the
attacks. It is also remarkable the high success rates observed for attack 1, which
are quite similar to attack 2. In the attack 1, an intruder would be correctly
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enrolled in the system using a fake image of another person and at a later date,
he/she would be granted access to the system also using a fake image.

4 Conclusion

An evaluation of the vulnerabilities to direct attacks of iris-based verification sys-
tems has been presented. The attacks have been evaluated using fake iris images
created from real iris of the BioSec baseline database. We printed iris images
with a commercial printer and then, we presented the images to the iris sensor.
Different factors affecting the quality of acquired fake images have been stud-
ied, including preprocessing of original images, printer type and paper type. We
have chosen the combination giving the best quality and then, we have built a
database of fake images from 100 eyes, with 8 iris images per eye. Acquisition of
fake images has been carried out with the same iris camera used in BioSec.

Two attack scenarios have been compared to the normal operation mode of
the system using a publicly available iris recognition system. The first attack
scenario considers enrolling to the system and accessing it with fake iris. The
second one represents accessing a genuine account with fake iris. Results showed
that the system is vulnerable to the two evaluated attacks. We also observed that
about 72% of the fake images were correctly segmented by the system. When
that this happens, the intruder is granted access with high probability, reaching
the success rate of the two attacks a 50% or higher.

Liveness detection procedures are possible countermeasures against direct at-
tacks. For the case of iris recognition systems, light reflections or behavioral
features like eye movement, pupil response to a sudden lighting event, etc. have
been proposed [11,12]. This research direction will be the source of future work.
We will also explore the use of another type of iris sensors, as the OKI’s hand-
held iris sensor used in the CASIA database2.

Acknowledgments. This work has been supported by Spanish project
TEC2006-13141-C03-03, and by European Commission IST-2002-507634 Biose-
cure NoE. Author F. A.-F. is supported by a FPI Fellowship from Consejeria de
Educacion de la Comunidad de Madrid. Author J. G. is supported by a FPU
Fellowship from the Spanish MEC. Author J. F. is supported by a Marie Curie
Fellowship from the European Commission.

References

1. Jain, A., Ross, A., Pankanti, S.: Biometrics: A tool for information security. IEEE
Trans. on Information Forensics and Security 1, 125–143 (2006)

2. Jain, A., Bolle, R., Pankanti, S. (eds.): Biometrics - Personal Identification in
Networked Society. Kluwer Academic Publishers, Dordrecht (1999)

3. Monro, D., Rakshit, S., Zhang, D.: DCT-Based iris recognition. IEEE Trans. on
Pattern Analysis and Machine Intelligence 29(4), 586–595 (2007)

2 http://www.cbsr.ia.ac.cn/databases.htm



190 V. Ruiz-Albacete et al.

4. Schneier, B.: The uses and abuses of biometrics. Communications of the ACM 48,
136 (1999)

5. Ratha, N., Connell, J., Bolle, R.: An analysis of minutiae matching strength. In:
Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 223–228. Springer,
Heidelberg (2001)

6. Soutar, C., Gilroy, R., Stoianov, A.: Biometric system performance and security. In:
Proc. IEEE Workshop on Automatic Identification Advanced Technologies, AIAT
(1999)

7. Fierrez, J., Ortega-Garcia, J., Torre-Toledano, D., Gonzalez-Rodriguez, J.: BioSec
baseline corpus: A multimodal biometric database. Pattern Recognition 40(4),
1389–1392 (2007)

8. Gonzalez, R., Woods, R.: Digital Image Processing. Addison-Wesley, Reading
(2002)

9. Masek, L., Kovesi, P.: Matlab source code for a biometric identification system
based on iris patterns. The School of Computer Science and Software Engineering,
The University of Western Australia (2003)

10. Daugman, J.: How iris recognition works. IEEE Transactions on Circuits and Sys-
tems for Video Technology 14, 21–30 (2004)

11. Daugman, J.: Anti spoofing liveness detection,
http://www.cl.cam.ac.uk/users/jgd1000/countermeasures.pdf

12. Pacut, A., Czajka, A.: Aliveness detection for iris biometrics. In: Proc. IEEE Intl.
Carnahan Conf. on Security Technology, ICCST, pp. 122–129 (2006)

http://www.cl.cam.ac.uk/users/jgd1000/countermeasures.pdf


B. Schouten et al. (Eds.): BIOID 2008, LNCS 5372, pp. 191–199, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Evaluating Systems Assessing Face-Image Compliance 
with ICAO/ISO Standards∗ 

M. Ferrara, A. Franco, and D. Maltoni 

C.d.L. Scienze dell’Informazione - Università di Bologna  
via Sacchi 3, 47023 Cesena, Italy 

DEIS – Viale Risorgimento, 2 – 40126 Bologna, Italy  
{ferrara,franco,maltoni}@csr.unibo.it  

Abstract. This paper focuses on the requirements for face images to be used in 
Machine Readable Travel Documents, defined in the ISO/IEC 19794-5 stan-
dard. In particular an evaluation framework is proposed for testing software 
able to automatically verify the compliance of an image to the standard. The  
results obtained for thee commercial software are reported and compared. 

1   Introduction 

Face represents one of the most used biometric traits, for both computer automated 
and human assisted person identification. To allow interoperability among systems 
developed by different vendors and simplify the integration of biometric recognition 
in large-scale identification (e-passport, visas, etc.) a standard data format for digital 
face images is needed. In this context, the International Civil Aviation Organization 
(ICAO) started in 1980 a project focused on machine assisted biometric identity con-
firmation of persons. Initially three different biometric characteristics where identified 
for possible application in this context (face, fingerprint, iris), but finally face was 
selected as the most suited to the practicalities of travel document issuance, with fin-
gerprint and/or iris available for choice by States for inclusion as complementary 
biometric technologies. Of course high quality, defect-free digital face images are 
needed to maximize both the human and computer assisted recognition accuracy. 
Starting from the ICAO work, in 2004 the International Standard Organization (ISO) 
defined a standard [3] for the digital face images to be used in the Machine Readable 
Travel Documents. The standard specifies a set of characteristics that the image has to 
comply, mainly related to the position of the face in the image and to the absence of 
defects (blurring, red eyes, face partially occluded by accessories, etc.) that would 
affect both the human and automatic recognition performance.  

In view of the widespread adoption of the new standard, some vendors of biometric 
technologies started to develop and distribute software applications able to automati-
cally verify the compliance of a face image to the ISO standard. However, until now 
no independent and systematic evaluation of these algorithms have been done, and it 
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is not clear if these systems can effectively assist or substitute humans in checking 
face-image compliance with the standards. 

To the best of our knowledge one of the few experiments related to this issue has 
been carried out by the Federal Office for Information Security (BSI) in Germany, 
one of the first European countries to adopt the electronic passport; this evaluation 
[5], aimed at verifying the compliance of face images to the ISO/IEC 19794-5 stan-
dard [3], was performed on 3000 images from field applications, and was carried out 
mainly by manual inspection. 

The aim of this paper is to define a testing protocol for the automatic evaluation of 
systems verifying compliance of face-images with ISO/IEC 19794-5 standard. Start-
ing from the guidelines and the examples of compliant and non-compliant images 
provided in the ISO standard, a set of salient characteristics has been identified and 
encoded, a precise evaluation protocol has been defined, and a software framework 
has been developed to fully automate the test. We believe that the possibility of fully 
automating such evaluation is a crucial point since it allows to effortless repeat the 
test on new systems and new databases.  

The paper is organized as follows: in section 2 the main ISO requirements are de-
tailed, in section 3 the evaluation protocol and framework are introduced; section 4 
presents the experiments carried out and finally in section 5 some concluding remarks 
are given. 

2   The ISO/IEC 19794-5 Standard and the Tests Defined 

The ISO/IEC 19794-5 international standard [3] specifies a record format for storing, 
recording and transmitting the facial image information and defines scene constraints, 
photographic properties and digital image attributes of facial images. 
Each requirement is specified for different face image types:  

• Full frontal. Face image type that specifies frontal images with sufficient resolu-
tion for human examination as well as reliable computer face recognition. This 
type of image includes the full head with all hair in most cases, as well as neck and 
shoulders. 

• Token frontal. Face image type that specifies frontal images with a specific geo-
metric size and eye positioning based on the width and height of the image. This 
image type is suitable for minimizing the storage requirements and to simplify 
computer based recognition (the eyes are in a fixed position). 

The requirements introduced by the ISO standard are organized in two categories: 
geometric and photographic requirements.  

The geometric requirements are related to the position of the face and of its main 
components (eyes, nose, etc.) within the digital image. In Fig. 1 the geometric characteris-
tics of the digital image used to specify the requirements for the full frontal format are 
shown. The following basic elements are considered in the definition of the requirements:  

− A: image width, B: image height; 
− AA: imaginary vertical line positioned at the center of the image; 
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− BB: vertical distance from the bottom edge of the image to an imaginary horizontal 
line passing through the center of the eyes; 

− CC: head width defined as the horizontal distance between the midpoints of two 
imaginary vertical lines; each imaginary line is drawn between the upper and lower 
lobes of each ear and shall be positioned where the external ear connects the head; 

− DD: head height defined as the vertical distance between the base of the chin and 
the crown.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Geometric characteristics of the Full Frontal Face Image (a) and definition of the pose 
angles with respect to the frontal view of the subject (b) 

The photographic requirements refer to characteristics of the face (e.g. expression, 
mouth open) and of the image (e.g. focus, contrast, natural skin tone). Starting from 
the guidelines and the examples of acceptable/unacceptable images provided in [3], 
we defined a set of tests (see Table 1).  

The token face image format inherits the requirements of the frontal face image 
type [3], does not require to comply with the geometric constraints of full frontal 
images (see tests 3..7 in Table 1), but enforces other geometric constraints related to 
the eyes position and the image size proportion (see Table 2). 

3   The Software Framework 

A software framework has been developed to evaluate and analyze the performance of 
algorithms provided in the form of SDK (Software Development Kit). The framework 
offers the following functionalities. 
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Table 1. Tests defined to evaluate systems for ISO compliance check. The last column of the 
table (Section) denotes the section of [3] from which the test was derived. 

N° Description of the test Section 
Feature extraction accuracy tests 

1 Eye Location Accuracy  
2 Face Location Accuracy (other points)  

Geometric tests (Full Frontal Image Format) 
3 Eye Distance (min 90 pixels) 8.4.1 
4 Relative Vertical Position (0.5B<=BB<=0.7B) 8.3.3 
5 Relative Horizontal Position (no tolerances) 8.3.2 
6 Head Image Width Ratio (0.5A<=CC<=0.71A) 8.3.4 
7 Head Image Height Ratio (0.7B<=DD<=0.8B) 8.3.5 

Photographic and pose-specific tests 
8 Blurring 7.3.3 
9 Looking Away 7.2.3 

10 Ink Marked/Creased A3.2.3 
11 Unnatural Skin Tone 7.3.4 
12 Too Dark/Light 7.3.2 
13 Washed Out 7.4.2.1 
14 Pixelation A3.2.3 
15 Hair Across Eyes A3.2.3 
16 Eyes Closed 7.2.3 
17 Varied Background A2.4 
18 Roll/Pitch/Yaw Greater 5 7.2.2 
19 Flash Reflection on Skin 7.2.10 
20 Red Eyes 7.3.4 
21 Shadows Behind Head A3.2.3 
22 Shadows Across Face 7.2.7 
23 Dark Tinted Lenses 7.2.11 
24 Flash Reflection on Lenses 7.2.11 
25 Frames too Heavy A4.3 
26 Frame Covering Eyes 7.2.3 
27 Hat/Cap A3.2.3 
28 Veil over Face A3.2.3 
29 Mouth Open 7.2.3 
30 Presence of Other Faces or Toys too Close to Face A3.2.3 

Table 2. Geometric tests for the token image type. The last column of the table (Section) de-
notes the section of [3] from which the test was derived. 

Geometric tests (Token Frontal Image Format) Section 
Image Width W (min 240 pixels) 9.2.4 
Image Height (= W / 0.75) 9.2.3 
Y Coordinate of Eyes (=0.6 * W) 9.2.3 
X Coordinate of First (right) Eye (=(0.375 * W) – 1) 9.2.3 
X Coordinate of Second (left) Eye (=(0.625 * W) – 1) 9.2.3 
Width from Eye to Eye (inclusive) (=0.25 * W) 9.2.3 
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− Manual image labeling. It allows to load a database of images and, for each of 
them, to manually: 

• label by point and click the main facial features such as eye centers, center of 
mouth, nostrils, etc.; 

• specify the compliance of the image with respect to the characteristics underly-
ing the tests 8..30 in Table 1. Labels are tri-state values (compliant, non-
compliant and dummy). A dummy label is assigned when the human expert is 
not confident enough whether the image is compliant or not.  

− Artificial dataset generation. Most of the images used for the tests belong to face 
databases available to the scientific community; for some of the tests it is very dif-
ficult to find in these databases a sufficient number of non-compliant images. The 
framework offers a tool to generate artificial images non-compliant with respect to 
a particular characteristic by applying some image processing to “real” compliant 
images. In the current version of the framework the following transformations are 
available: blurring, brightness and contrast adjustment, pixelation, addition of red 
eyes. Each transformation is characterized by a specific set of parameters that can 
be tuned to control the effect of the operation on the real image (see Fig. 2 for 
some example). 

− Automatic SDK testing. In order to interface the framework with different SDKs a 
simple interface protocol based on a command-line executable has been defined 
and provided to the SDK vendors. The executable evaluates the compliance of a 
single image and provides in output a compliance degree (in the range 0..100) for 
each of the characteristics underlying the tests in Table 1. The results obtained can 
be analyzed and compared on the basis of several performance indicators among 
which EER, FAR/FRR curves, DET graphs. Any new SDK, in order to be tested, 
simply needs to comply with the defined testing protocol. 

4   Experiments 

Three commercial SDKs, whose names cannot be disclosed (here referred to as A, B 
and C), have been evaluated in our experiments; for each of them the compliance of 
each image in the dataset has been measured with respect to the characteristics 1, 
8..30 underlying the cases reported in Table 1; the geometric tests 2..7 are not in-
cluded in this study, because of the non-uniform way the different SDKs provide in 
output details about the location of internal face-feature. This part of the evaluation 
will be done in a successive study. 

Analogously to a biometric verification systems the SDKs here evaluated can make 
two types of errors: declaring compliant with respect to a given characteristic an im-
age that is non-complaint (False Acceptance) and declaring non-compliant and image 
that is compliant (False Rejection). Images labeled as dummy for a given characteris-
tic are excluded from the corresponding test. 

According to this protocol, the results are reported for each characteristic in terms 
of EER and rejection rate. A rejection occurs when either the SDK is not able to proc-
ess an image or the image is processed but the SDK is not able to evaluate the specific 
characteristic. According to the best practices the rejection is here included in the 
calculation of EER [4]: this is implicitly done by, assuming that a 0 compliance  
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Fig. 2. An example of application of each image operation. (a) Original image; (b) blurred; (c) 
unnatural skin tone; (d) too dark/light; (e) washed out; (f) pixelation; (g) red eyes. 
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Fig. 3. Eye localization accuracy 

degree (for the given characteristic) is returned in case of rejection. This choice is 
aimed at discouraging the software to reject the most uncertain cases thus improving 
the performance over processed images. 
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(b) (c) (d) 
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4.1   The Database 

The dataset used is the publicly available AR Face Database [1] containing 2000 
images of different subjects. Unfortunately some of the images are defective or not 
available, so that finally 504 images from 126 subjects have been selected. The im-
ages, whose original size is 768×576 pixels, have been cropped to 480 (w) × 640 (h). 
The database contains about four images of each subject: one with natural lighting 
and expression, two with evident facial expressions (smile and angry) and one with a 
strong lateral illumination.  

The presence of images with varying expression and lighting allows to verify the abil-
ity of the various SDKs to evaluate the compliance with respect to some of the character-
istics given in section 2. Unfortunately the original dataset contains no (or a few) images 
non-compliant with respect to some of the requirements identified. In order to carry out a 
more precise evaluation of all the characteristics, some additional “artificial” datasets 
have been generated by applying specific digital image operations (see Fig. 2) that cannot 
be described here in detail for lack of space. In particular, derived datasets have been  
 

Table 3. EER and Rejection Rate of the three SDKs evaluated 

A B C Characteristic 
EER Rej. EER Rej. EER Rej. 

8 Blurred 1.88% 3.47% 2.48% 0.30% 65.87% 0.60% 
9 Looking Away 1.79% 0.20% - - 1.19% 0.40% 
10 Ink Marked/Creased - - - - - - 
11 Unnatural Skin Tone 7.09% 0.00% 50.00% 0.13% 2.67% 0.40% 
12 Too Dark/Light - - 25.15% 0.14% 25.17% 0.54% 
13 Washed Out - - 23.11% 0.99% 0.79% 1.98% 
14 Pixelation - - 1.39% 0.50% - - 
15 Hair Across Eyes 50.00% 94.44% - - - - 
16 Eyes Closed 12.11% 2.90% - - 22.59% 0.41% 
17 Varied Background 17.91% 0.24% 48.87% 0.72% 46.86% 0.48% 
18 Roll/Pitch/Yaw Greater 5 - - 13.96% 0.60% 43.72% 0.40% 
19 Flash Reflection on Skin 0.51% 0.20% 49.38% 0.60% - - 
20 Red Eyes 4.86% 0.60% 50.00% 0.99% 3.70% 1.10% 
21 Shadows Behind Head - - - - - - 
22 Shadows Across Face 28.94% 2.78% - - 34.77% 0.40% 
23 Dark Tinted Lenses - - - - 25.00% 0.40% 
24 Flash Reflection on Lenses - - - - 22.77% 0.42% 
25 Frames too Heavy - - - - - - 
26 Frame Covering Eyes 50.00% 93.82% - - 16.18% 0.20% 
27 Hat/Cap - - - - - - 
28 Veil over Face - - - - / 0.40% 
29 Mouth Open 5.88% 23.72% - - 14.64% 0.20% 
30 Objects too Close to Face - - - - - - 
- the SDK does not support the test for this characteristic 
/ the EER is not calculated since the dataset does not contain non-compliant images 
The bolded values indicate the best performance for each characteristic. 
The grayed rows correspond to characteristics evaluated mainly on compliant images. For these charac-
teristics additional tests on extended datasets are needed. 
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generated for blurring (1008 images), unnatural skin tone (748), too dark/light (735), 
washed out (1008), pixelation (1008) and red eyes (1000). The images in these datasets 
are equally distributed between compliant and non-compliant. 

4.2   Experimental Results 

The results of the evaluation carried out are reported in this section. As to the geomet-
ric requirements, the eye localization accuracy of the SDKs is shown in Fig. 3. The 
columns refer to increasing intervals of localization errors (in pixels). The column 
“Correct” includes all the cases where the maximum error (among the single errors 
for the two eyes) is lower than 6 pixels. On average, in the images used for testing, 
the distance between the two eyes is 125 pixels. The result for SDK B is not reported 
since it does not output the eye position. The two SDKs achieve a very good localiza-
tion accuracy, even in the presence of difficult cases; A is the most accurate. 

The results obtained by the three SDKs on tests 8..30 are reported in Table 3 where 
the EER and rejection rate are given. The rejection rate is in most cases quite low, but 
it is worth noting that this value for SDK A is noticeable for some characteristics (e.g. 
hair across eyes). For a further comparison of the three SDKs, the results in terms of 
EER shown in Table 3 are summarized in Fig. 4 where the EER distribution for the 
three SDKs is reported. Five EER intervals have been defined and each bar of the 
graph represents the number of tests that a given SDK is able to manage with an accu-
racy value included in the related range. 
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Fig. 4. Distribution of the three SDKs accuracy in five EER intervals. The x-axis reports the 
EER ranges, and the y-axis indicates the number of tests on which a SDK reaches an EER 
included in that range. 
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It is worth noting that the number of characteristics evaluated by the three SDKs is 
different: in particular, A verifies 11 requirements, reaching in most cases a good 
accuracy; B evaluates only 9 requirements and the results obtained are mostly unsatis-
factory; finally, C deals with 14 requirements and the accuracy is quite variable and 
strictly dependent on the specific requirement. 

5   Conclusions 

This work addresses the problem of evaluating the accuracy of automatic software for 
ISO/IEC 19794-5 compliance check. To this purpose, a testing protocol and an 
evaluation framework have been developed. 

The results show that the three SDKs evaluated are able to accurately check only 
some characteristics while achieving unsatisfactory performance for others. An analy-
sis of the results in Table 3 and Fig. 4 show that some requirements (e.g. blurred, 
unnatural skin tone, washed out) are easily verifiable by an automatic software. On 
the other hand, characteristics like hair across eyes or frame covering eyes are diffi-
cult to be automatically evaluated, and a human expert inspection is recommended. 
Finally, characteristics such as looking away, too dark/light and mouth open are not 
classified accurately by the three SDKs, but a deeper analysis of the problem and the 
availability of training images would certainly allow to significantly improve the 
performance. As future work the dataset will be extended by including new samples 
of non-compliant images with respect to all the grayed characteristics in Table 3. It is 
our intention to make a new database (labeled and partitioned into training and test 
sets) available to the scientific community to allow the comparison with other SDKs, 
the improvement of existing techniques and development of new algorithms. 
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Abstract. An approach for the evaluation of the average slope of the straight 
line strokes in signatures and handwritten text is described. It is based on the 
properties of the Fourier Transform which allow accumulating energy of pix-
els lying on straight lines of same slope alongside a single straight line in the 
frequency domain. The slope of the latter determines straightforwardly the 
stroke slope since both slopes differ in π/2. The approach does not require im-
age binarization.  

Keywords: Handwriting, Line slope, Segmentation. 

1   Introduction 

A new emerging area of interest concerns the increased people mobility and devel-
opment of fast and reliable authentication systems based on biometric parameters, 
including handwriting. The ever increasing threats of illegal access to specific infor-
mation or equipment require developing of reliable and non-abusive access-permit 
systems. The signature happened to be one of the biometrics modalities that had been 
commonly accepted and used for document authentication. The identification parame-
ters relate to geometric shape of different elements constituting the signature, type of 
connections between them, evaluation of the applied pressure and writing dynamics, 
tilt towards the basic line, etc. To measure them automatically, one has first to seg-
ment the signature into strokes.   

The slope of the strokes is one of the parameters that have been always used. It re-
flects the established writer’s dynamic stereotype. It may play a significant role in 
cases where no forgery is expected, or in case of specific handwriting. However, 
strictly determined slope does not exist at all due to the natural variations of handwrit-
ing from the one hand, and different stroke slope inherent to specific characters and 
connections between them, on the other hand. This specificity has lead to the qualita-
tive estimation of the slope in terms of categories as “left”, “upright”, right”, “pre-
dominantly right” and like. But they do not indicate exactly how big the slope is and 
do not make it possible to distinguish between different “right” slopes, for example. 
However, measurement of the slope of different strokes is tedious and time consum-
ing work and is prone to subjectivity. By this reason objective measure of the “aver-
age” slope of the strokes in handwriting is desirable. 
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Another problem related to the graphometric methodology in handwriting analysis 
concerns the evaluation of character width and distances between letters. If the aver-
age slope of writing is known this may help the proper segmentation of the words and 
contribute to the above mentioned parameters. 

Different heuristics and Hough Transform (HT) based techniques have been used 
for the detection of line slope [1,4,5]. Since HT of line l (1)  

 

)sin()cos(: θθρ yxl +=                                                (1) 
 

is generally applied to binarized images, to apply it for halftone images V. Shapiro [4]  
replaces the original image by a simulated one, using the DH (Digital Halftone) trans-
form and showing the closeness of the obtained results to those obtained from RD 
(Radon Transform) (2) applied to the original half tone image. Thus the computa-
tional cost inherent to RD is reduced. 
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However, this approach is not very suitable for the problem of stroke slope evalua-
tion. In [1] an attempt in this direction is made, also based on HT, where a method is 
proposed making the HT-approximation error close to zero. Thus, evaluating maxi-
mums in HT-space the row slope and character tilt could be evaluated. The major 
problem in all HT-based cases concerns the calculation workload.  

In this paper an approach is suggested dealing with halftone images and giving the 
possibility for fast and successful stroke slope evaluation. It is based on the well 
known properties of the Fourier Transform (FT) which is an additional advantage, 
because one can use optimized FT procedures included in the libraries of scientific 
oriented software products like Matlab. 

2   The Approach 

The approach is based on the fact stemming from the Fourier slice theorem that FT of 
a straight line of slope θ is a straight line of slope θ + π/2. This statement could be 
checked in the following way. 

Let the image f(p,q) of size NxN contains only the horizontal line lo: q=0, i.e.  
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Its DFT (Discrete Fourier Transform) is obtained according to the following for-
mula [4] 
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The summands from the last sum are terms of a geometric progression with a quo-
tient )/2exp( Njπ− , therefore 
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Thus, DFT of lo is the vertical straight line at m = 0, which may be taught as a rota-
tion of lo at 900 about the origin. 

Let now the horizontal line lo be shifted at the position qo ≠ 0. According to the 
shifting property of FT [2,3] we will have 
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0),(ˆ =nmg for m > 0 and an arbitrary n < N since 0),( =nmg in that case. At m = 

0 the value of ),0(ˆ ng will be )2exp(),0(ˆ
N
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column will be the first one. This result shows that if we have a few horizontal 
straight line segments in f(p,q) their DFT will result in a  non-zero column at the ori-
gin. This is so because the image f(p,q) could be presented as a sum of as many as the 
number of segments images, each of them containing just one segment. Therefore, 
DFT of a set of horizontal lines will be an image of zero entries except the ones 
alongside the first vertical column. 

In the same way using the rotation property of FT we may claim that the FT of a 
line lθ of slope θ will result in the rotation at angle θ of the FT of line lo. Therefore the 
FT of the rotated line will be a non-zero line rotated at the angle θ + π/2. Same will be 
valid for a set of line segments oriented at an angle θ. This suggests the following 
technique for the detection and extraction of straight lines of same slope in a source 
image f(p,q).  

1. Evaluate g(m,n) as a centered DFT of  f(p,q). 
2. Using a circular scan of g(m,n) about the center detect the peaks alongside the 

circle. 
3.  Evaluate the angle of line through the center and the maximal peak.  

3   Experimental Results 

To check the efficacy of the approach different experiments have been carried out in 
Matlab environment. In the first experiments gray scale images with line segments of 
almost same orientation were used.  In Fig. 1 sloped line segments are present to-
gether with their DFT. An angle of 76.20 is detected from the image in Fig. 2b which 
corresponds to -13.80 of slope for the original image. 

The background around the bright line in Fig 2b is not uniform which is due to the 
non-zero background in the original image. Also, the lines drawn by pencil are not 
fully black and have width of more than one pixel, as it could be seen in Fig. 1a. This 
may cause problems with the correct detection of the slope. To avoid random bright  
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                       a)                                                                              b) 

Fig. 1. a) Slant lines, b) DFT of the image from a) 

pixels in the DFT image that may produce false maximums, it is better to use different 
radii of circular scanning. In these simple cases a value of about 1/6 of the image 
height was used without problems. 

The above example contained a simple image. To be useful in practice, the approach 
has to have the ability to detect the slope in more complicated cases, consisting of strokes 
from dashed lines or strokes of different orientation as in signatures.  

In Fig. 2a) an example of an image consisting of a set of dashed lines of similar 
orientation is shown.  

 

      
a) b) 

Fig. 2. a) Dashed lines, b) DFT of the image from a) 

In Fig. 2b) except the brightest vertical line about the origin bright lines on its both 
sides and non-uniform background are visible. This is due to the fact that the assump-
tion of a continuous straight line in the above theoretical speculation is not fulfilled in 
this example. But still it is possible to evaluate the predominant slope of the segments. 

In Fig. 3a) an example of a signature is shown. Fig. 3b) presents its DFT and Fig. 
3c) shows the plot of the circular scan. An angle of 750 was evaluated corresponding 
to the highest maximum. This maximum is related to the vertically oriented strokes. 
The other bright lines describe the slope of the upper strokes and the slope of the 
intermediate connecting elements. 

Detecting the slope one could apply inverse FT preserving only the values alongside 
the corresponding line in the FT domain. Fig. 4a) presents the result of such an operation 
for the image in Fig. 3a). Applying a proper threshold and superimposing the obtained 
image on the original one will obtain the image in Fig. 4b) where the lines correspond to 
the major vertically oriented strokes in the signature. Distances between them may be 
used as another quantitative identification parameter. This could be easily achieved if a 
projection on the line perpendicular to the strokes is generated. The distances between the 
local peaks will correspond to the differences between strokes.  
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                   a)                                                                         b)  
 

 
 

                                                   c) 

Fig. 3. a) Signature,  b) DFT of the signature, c) Plot of the circular scan 

 

              
 

                                   a)                                                           b) 

Fig. 4. a) Inverse FT alongside the slope, b) Extraction of the lines 

One could repeat this operation using the next peaks from the circular scanning graph 
thus obtaining the major horizontally oriented strokes and intermediate ones. The combi-
nation of thus obtained images will result in a segmented image (see Fig. 5b). 

 

                                                                                
          

                          a)                        b) 

Fig. 5. a) Original signature,  b) Segmented signature 

The result from the application of the approach to images of handwritten text is 
shown in Fig. 6. a) and b). Nevertheless that the quality of the original image is not 
good, it is still possible to detect the bright line corresponding to the predominant 
slope of the strokes and evaluate the corresponding angle. 
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                                 a)                                                                                b) 

Fig. 6. a) Image of a handwritten text, b) FT of the image from a) 

3   Conclusion 

In this paper a DFT based approach is applied to the automatic detection of the slope 
of straight line segments in signatures and pieces of handwritten text. It does not as-
sume a binarized image as an input. Basic properties of FT are used to prove its ade-
quacy. Using the well developed procedures for the evaluation of FT, the approach 
does not require many efforts for its implementation and it is computationally inex-
pensive. The preliminary experiments have shown that it is robust to the background 
structure and to the quality of the foreground object. The extraction of predominantly 
oriented strokes could help signature segmentation and evaluation of important au-
thentication parameters.  

While computationally simple, problems may occur with the quality of the proc-
essed image in practice. They may lead to difficulties in the evaluation of the peaks 
from the circular scan. This may be overcome to some extend if the graph of the scan 
will be smoothed. Another problem concerns the magnitude of the scanning radius 
which influences the width of the lines in the restored images. Large width may cause 
some closed strokes to be merged in the restored image, while small one will ignore 
parts of the strokes. Future investigation will be aimed at the solution of these prob-
lems.  
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Abstract. In this paper we present a new speaker recognition system
based on the fusion of two identification classifiers followed by a verifi-
cation step. The user pronounces two passwords: the first one is com-
posed by three words uniquely combined from a set of 21 possible words,
while the second password represents the name of the user. The first
step of the proposed system uses the first password to feed two iden-
tification classifiers: a speaker identification system (text independent)
and a isolated word identification system (speaker independent). The
isolated word identification system is constructed as the fusion of three
classifiers, one for each word of the first password. The aim of this first
step is to identify a couple speaker/password corresponding to the first
password by combining the results of the two identification classifiers.
A verification system is then applied on the second password in order
to confirm or infirm the identification result (speaker identity) given by
the fusion above. Compared with a state of the art speaker recognition
system (text dependent) that gives an EER of 4.76%, the first step of
the proposed system provides an EER of 0.38%, while the second step
an EER of 0.26% for a text independent verification and of 0.13% for a
text dependent verification.

Keywords: Biometric recognition system, Speaker identification,
Isolated word recognition, Data fusion, GMM/UBM.

1 Introduction

The biometric recognition systems, used to identify persons on the basis of phys-
ical or behavioral characteristics (voice, fingerprints, face, iris, etc.), have gained
in popularity during recent years especially in forensic work and law enforce-
ment applications [1]. The use of the voice as a biometric characteristic offers
advantages such as: it is well accepted by users, can be recorded by regular micro-
phones, the hardware costs are reduced, etc. Two different tasks can be defined
for voice-based biometric systems: speaker identification and speaker verifica-
tion. In the former case, an unknown speaker is compared to N known speakers
models stored in the database and the best matching speaker is returned as the
recognition decision. In the later case, an identity is claimed by a speaker and the

B. Schouten et al. (Eds.): BIOID 2008, LNCS 5372, pp. 206–215, 2008.
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system compares the voice sample to the voice model of the claimed speaker. If
the similarity exceeds a predefined threshold, the speaker is accepted, otherwise
is rejected. Two methods can be employed for both systems: text-dependent and
text-independent. The text pronounced by the speaker is known beforehand by
the system in the former case, while the system does not have any information
on the pronounced text in the later case [9].

However, due to channel distortions, ambient noise, etc., a mismatch between
training and testing conditions appears and the performances of voice-based
biometric systems easily degrade. In order to improve the performances of these
systems a solution is to merge different information carried out by the speech
signal. Several studies on data fusion shown that the performances of this kind
of speaker recognition system are improved [2,8,10]. However, the results are less
good compared to biometric systems based on other modalities (fingerprint, iris,
etc) or on the fusion of different modalities.

This paper proposes a fusion approach that uses two kinds of information
contained in the speech signal: the speaker (who spoke?) and the password
pronounced (what was said?). A first test signal is used to identify a couple
speaker/password. This step is done by merging the likelihood ratios given by
two identification systems: a speaker identification system (text-independent)
and a word recognition system (speaker-independent). The word identification
system is constructed as the fusion of three isolated word recognition systems,
one for each word of the first test signal. The speaker identified by this first
step is then confirmed by a classical verification system on a second test sig-
nal. The first test signal is composed by three words uniquely combined from a
set of 21 possible words, while the second one represents the name of the user.
The proposed system gives good improvements in terms of Equal Error Rate
(EER) compared with the state of the art (text dependent speaker recognition
system). Note that the experiments presented in this study use the platform
ALIZE developed by the LIA laboratory (Avignon University, France) [4].

This paper is organized as follows. Section 2 provides a brief overview of
speaker recognition systems. Section 3 presents the proposed system while the
experiments are discussed in Section 4, followed by conclusions in the last section.

2 Speaker Recognition System Overview

The general structure of an automatic speaker recognition system is shown
in Figure 1. This system operates in two modes: training and recognition. In
the training mode a new speaker (with a known identity) is enrolled into the
database, while in the recognition mode an unknown speaker gives a speech in-
put signal and the system try to identify the speaker. This system can be used
for both identification and verification tasks.

2.1 Features Extraction

Features extraction is the first component of an Automatic Speaker Recognition
(ASR) system [6]. It transforms the input speech waveform into a sequence of
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Fig. 1. Architecture of a speaker recognition system

acoustic feature vectors (called also parameters) through a signal time division.
Most of the speech parameters used in speaker recognition systems relies on a
cepstral representation of the speech signal [11]. The aim of this transformation
is to obtain a new representation that is more compact, less redundant, and more
suitable for statistical modeling.

Mel-frequency cepstral coefficients (MFCC): The use of the MFCC pa-
rameters is motivated by studies of the human peripheral auditory system. The
speech signal x(n) is firstly divided into q short time windows. The Discrete
Fourier Transform (DFT) is then applied to convert each time window into the
spectral domain. Each magnitude spectrum is then smoothed by a bank of tri-
angular overlapping bandpass filters. Each filter, H(k, m), computes a weighted
average of that sub-band, which is then logarithmically compressed:

X ′(m) = ln

(
N−1∑
k=0

|X(k)|H(k, m)

)
, (1)

where X(k) is the DFT of a time window of length N of the signal x(n), the index
k corresponds to the frequency fk = kfs/N , with fs the sampling frequency, the
index m is the filter number, and the filters H(k, m) are triangular filters defined
by the center frequencies fc(m) [13]. The log compressed filter outputs X ′(m),
called also mel log-amplitudes, are then decorrelated by using the Discrete Cosine
Transform. The MFCCs are the amplitudes of the resulting spectrum.

A schematic representation of this procedure is given in Figure 2.
The mel mapping used here to define the bank of triangular filters is:

Mel(f) = 2595 log10(1 +
f

700
). (2)

The LFCC parameters are calculated in the same way as the MFCC, but the
triangular filters use a linear frequency repartition.

Energy and Derivatives(∆, ∆∆): Usually we need to add other parameters
to the cepstral ones, such as the energy and the derivatives. The energy in a frame
is the sum over time of the power of the samples in the frame. Another important
fact about the speech signal is that it is not constant from one frame to another,
for this reason we also add features related to the change in cepstral features
over time. We do this by adding for each vector features a velocity feature (∆)
and acceleration feature (∆∆)[10].
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2.2 Speaker Modeling

The training phase uses the acoustic vectors extracted from each segment of
the signal to create a speaker model which will be stored in a database. In ASR
system there are two class of methods that give good results of recognition: deter-
ministic methods (dynamic comparison and vector quantization) and statistical
methods (Gaussian Mixture Model - GMM, Hidden Markov Model - HMM),
these last ones being the most used in this domain.

We have chosen to use a GMM based system that employs a Universal Back-
ground Model (UBM). The UBM has been introduced by [12] in speaker verifi-
cation in order to capture the general characteristics of a population. This model
is created by using all recording of the database, the aim being to have a general
model of speakers which will be then used to adapt each speaker model. This
choice was motivated by two reasons: modeling by GMM is very flexible with
regard to the type of the signal and the use of GMM gives a good compromise
between performances and the complexity of the system.

GMM-UBM: The matching function in GMM is defined in terms of the log
likelihood of the GMM in respect to the speech segment X given by:

p(X |λ) =
Q∑

q=1

log p(xq|λ), (3)

where p(xq|λ) is the Gaussian mixture density of the qth segment in respect to
the speaker λ:

p(xq |λ) =
G∑

i=1

pif(xq|µ(λ)
i , Σi), (4)

with the mixing weights constrained by
G∑

i=1

pi = 1.

In these expressions xq is the D-dimensional acoustic vector corresponding to
the qth time window of the input signal, pi, µ

(λ)
i and Σi (i = 1, . . . , G) are the

mixture weight, mean vector, and covariance matrix of the ith Gaussian density
function (denoted by f) of the speaker λ, while G denotes the number of GMM
used by the model.
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The speaker model λ is thus given by: λ =
{
pi, µ

(λ)
i , Σi|i = 1, . . . , G)

}
. The

UBM model has the same form: UBM =
{
pi, µ

(UBM)
i , Σi|i = 1, . . . , GU

}
and is

created by using all recordings of the database.
The mean vectors of speaker model µ

(λ)
i are adapted to the training data

of the given speaker from the UBM, i.e. µ
(UBM)
i , by using the Maximum a

Posteriori (MAP) adaptation method [7], the covariance matrices and mixture
weights remaining unchanged.

2.3 Pattern Matching and Decision

Given a segment of speech, Y , and a hypothesized speaker, S, the task of speaker
recognition system is to determine if Y was spoken by S. This task can be defined
as a basic hypothesis test between:

– H0: Y is from the hypothesized speaker S
– H1: Y is not from the hypothesized speaker S

To decide between these hypotheses, the optimum test is the likelihood ratio:

p (Y |H0)
p (Y |H1)

{≥ θ Accept H0
< θ Reject H0

, (5)

where p(Y |Hi) is the probability density function for the hypothesis Hi evalu-
ated for the observed speech segment Y , also referred to the likelihood of the
hypothesis Hi. The decision threshold for accepting or rejecting H0 is θ. A good
technique to compute the two likelihoods, p(Y |H0) and p(Y |H1), is given in [5].

3 Proposed System Architecture

In this paper we present a new ASR system based on the fusion of two identifi-
cation classifiers followed by a verification step (Fig. 3). This system is divided
into two stages, the first one composed by two classifiers (speaker and word clas-
sifiers) and the second one made up by a verification system using the decision
result of the first stage. Each speaker is identified by two signals: the first one
(combination of three words from a set of 21 possible words) is used by both
speaker and word identification systems, while the second one by the verification
system. All classifiers used a normalization UBM model, as presented in section
2.2. This means that during the creation of the models (speakers, words), each
model is adapted by the MAP method from the UBM model.

3.1 Speaker Identification Text Independent System

The speaker identification system is an open-set text independent system. This
system calculate the log likelihood ratio, by using Eq. (3), between the first signal
(made up by three words W1, W2, W3) and all speakers models. No decision is
taken at this level, but the log likelihood ratios are sorted.
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Fig. 3. Global system architecture

3.2 Word Identification Speaker Independent System

The same signal, made up by three words, is also used to feed a word identifi-
cation speaker independent system (Fig. 4). This system is constructed as the
fusion of three classifiers, one for each word of the first signal. The outputs of each
classifier are used in order to propose one or several recognized combinations of
words. Only the first three outputs of each module are combined by taking into
account the log likelihoods and the validity of the password. Each combination
of outputs will have associated the sum of their log likelihood. This approach,
which uses a manual words segmentation, was compared with a Viterbi algo-
rithm that performs an automatic extraction of the three words from the entire
first signal. The results are presented in section 4.

3.3 Data Fusion

After sorting the log likelihood ratios LLK(W1, W2, W3|Spi) calculated with
regard to the models of each speaker Spi, with i = 1 . . .N and N the number of
speakers stored in the database, and the log likelihood ratios LLK(W1, W2, W3
|Pswi) calculated with regard to the models of each password Pswi (see Fig.
4), a first test consists to compare the most likely speaker given by the speaker
classifier with the first three identified passwords (made up by three words)
given by the word identification system. If his password was found between the
three identified passwords, a couple (speaker/password) was thus identified. A
second test consists to compare the most likely password with the first three
identified speakers. If this password belongs to one of them, another couple
(password/speaker) is identified. In the cases where two couples are identified,
the couple with the biggest likelihood ratio (Lk Sp + Lk Psw) is retained. The
system can reject directly a recording if there are no identified couples.

3.4 Speaker Verification System

The verification system uses a second signal pronounced by the speaker previ-
ously identified in section 3.3. If the likelihood ratio of this verification is smaller
than a predefined threshold, the identity of the speaker is confirmed, otherwise
the speaker is rejected. For this stage, we have tested two possibilities: a ver-
ification based on a text-independent system (no information available on the
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Fig. 4. Speech identification system

pronounced word) and on a text-dependent system. The former is more flexible
as it allows the speaker to pronounce what he prefers.

4 Experiments

Database: In order to evaluate the proposed system a corpus of specific pass-
words has been recorded. This corpus contains the recordings of 21 isolated
words (French language) pronounced by 5 woman and 53 man (≈ 4, 28 hours).
The recordings were stored in WAV format, with a sampling rate fs = 44.1kHz.

Parameterization: The parameterization was realized by using MFCC param-
eters for the passwords modeling and LFCC for the speaker modeling. We have
optimized the acoustic parameter for this application; all the 8 ms the signal is
characterized by a vector made up of 16 ceptrals coefficients, energy and their
derivatives (∆, ∆∆).

Universal Background Model (UBM): In ours experiments, we have tested
different sizes (number of Gaussian component, i.e. GU ) of UBM: 64, 128, and
512. Note that the UBM is created by using all recordings of the database. The
best compromise performance-computation time was obtained by using GU =
128 Gaussian components for UBM model.

Reference system: The results obtained by the global proposed system are
compared to a classical text-dependent identification speaker system [3]. In the
training stage of the reference system a speaker model is created from the feature
vectors (16 LFCC+Energy+∆+∆∆). Each speaker model is created by using
three passwords (made up by three words). However the recognition phase uses
all the passwords of the speakers pronounced by the impostors and the other
two passwords pronounced by the clients. We have optimized the number of
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Gaussian components for the tests signal. The optimal value for our database is
G = 24 best components from the GU = 128 of UBM model.

Training and test data: For both identification systems (speaker and pass-
word) the first signal was composed by three words W1, W2, W3 combined in a
unique way from the set of 21 possible words. This kind of signal was used for
both training and test steps. The second signal used for the verification system
(for training and test also) was chosen in our application as the name of the user.
However, this is not a restriction for a text-independent verification system.

The database was divided into two groups: 49 clients and 9 impostors. In order
to evaluate the proposed system we have chosen an equal number of positive and
negative tests.

1. The speaker identification system (text-independent) uses 3 recordings of
17 words of the 49 clients for the training phase (≈ 29 minutes). For the
recognition phase, the system uses 2 recording of 20 words of the 49 clients
and 5 recordings of 20 words of the 9 impostors (784 tests).

2. The word identification system (speaker-independent) uses 3 recordings of
the 49 clients for the training phase (≈ 29 minutes). For the recognition
phase, the system uses 2 recording of the 49 clients and all recordings of the
impostors (784 tests).

3. The verification system uses 8 recordings of the second passwords of every
client for the training phase (≈ 7 minutes) and 2 recordings of the 49 clients
as well as all the recordings of the 9 impostors for the recognition phase.

The reference system uses for the training phase 3 recordings of 3 words of
the 49 clients (≈ 8 minutes). For the recognition phase we used 2 recording of
the 49 clients and 3 recordings of the 9 impostors (576 tests).

4.1 Results and Discussion

Table 1 presents the performances of each stage of the proposed system compared
to the state of the art system in terms of Equal Error Rate (EER).

The first stage of the proposed system (fusion) has an EER of 0.38% in com-
parison with the state of the art (text dependent speaker recognition system)
which reach 4.76%. The combination of the speaker identity with the password
recognition improves the performances by 90%. The second stage of the system
(verification stage) improves the results with 31% in respect to the first stage
using a text-independent (EER of 0.26%) and with 34% using text-dependent
verification system (EER of 0.13%). In the text independent case, the user has
more flexibility: he needs to memorize only a password (of three words) and he
can use any text for the second part. The better performance was obtained for a
text dependent verification stage, which is explained by the fact that the model
contains speaker and text information.

In the first stage we use a word identification system, based on the fusion of
three words recognition modules, which gives an EER of 5.56%. The segmen-
tation was ideal (manually applied) but we have evaluated also an automatic



214 M. Chenafa et al.

Table 1. Performances of different systems

Systems Parameters EER (%)
Reference System

16 LFCC+Energy+∆∆ 4.76%text dependent
Fusion between

Speaker: 16 LFCC+Energy+∆∆
0.38%

speaker and word Isolated words: 16 MFCC+Energy+∆∆
identification systems

Verification
16 LFCC+Energy+∆∆

Dep. Indep.
after fusion 0.13% 0.26%

segmentation system. We have compared this system with a Viterbi algorithm.
In the case of Viterbi algorithm, the passwords are modeled by an HMM with
three states and the identification system is feed directly with the combined
password of three words (without segmentation). The Viterbi approach gives an
EER of 23,84%, which is much higher than the fusion of three words recognition
systems based on a manual segmentation. This can be explaining by the fact
that in HMM modeling is difficult to reject the impostors.

5 Conclusion and Perspectives

In this paper, we have presented several experiments to improve the perfor-
mances of a voice-based biometric system by using two classifiers and a verifi-
cation system. The fusion of the results of a speaker identification system and
a words identification system constitutes the first stage of the proposed system.
This stage improves the EER by 90% in comparison with a state of the art
text-dependent system. The second stage is a speaker verification system that
uses the result (speaker identified) of the first stage. The aim here is to confirm
or infirm the result returned by the fusion system. This second stage allows to
reduce the number of impostors accepted by the first stage and improves the
results of the fusion by decreasing the EER from 0.38% to 0.13% (in a text de-
pendent system). The global system improves significantly the performances in
term of EER with regard to the reference system. Further works should evaluate
the impact of an automatic segmentation module and the influence of different
additive noises.
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Abstract. Biometrics is the automated method of recognizing a person
based on a physiological or behavioural characteristic. Biometric tech-
nologies are becoming the foundation of an extensive array of highly
secure identification and personal verification solutions. In the last few
years there is increasing evidence that technologies based on multimodal
biometrics can provide better identification results if proper fusion
schemes are accommodated. In this work, we present a novel platform
for multimodal biometric acquisition which combines voice, video, fin-
gerprint and palm photo acquisition through an integrated device, and
the preliminary fusion experiments on combining the acquired biomet-
rics modalities. The results are encouraging and show clear improvement
both in terms of False Acceptance Rate and False Rejection Rates com-
pared to the corresponding single modality approaches. In the current
report, fusion was accommodated at the output of the single modalities;
however, fusion experimentation is ongoing and further fusion method-
ologies are under investigation.

Keywords: Biometric fusion, Data Acquisition, GUI, Matlab.

1 Introduction

The emergence of automatic identification of an individual by using certain phys-
iological or behavioral traits, has addressed the problems that plague traditional
verification methods such as passwords and ID cards [1]. Biometric authentica-
tion requires comparing a registered or enrolled biometric sample. During en-
rolment a sample of the biometric trait is captured, processed by a computer,
and stored for later comparison. A biometric system based on a single biometric
identifier for a personal identification is often not able to meet the desired perfor-
mance requirements. The performance is largely affected by noise in sensed data,
non-universality, upper bound on identification accuracy, and spoof attacks [2].

B. Schouten et al. (Eds.): BIOID 2008, LNCS 5372, pp. 216–227, 2008.
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Some of the limitations of a biometric system can be addressed by using a con-
solidation of multiple sources of biometric information [3],[4],[5]. A multimodal
biometric system combines a variety of biometric identifies in making a personal
identification and takes the advantage of the capabilities of each individual bio-
metric. Based on the nature of biometric modalities, multibiometric systems can
be classified into six categories including multi-sensor, multi-algorithm, multi-
instance, multi-sample, multimodal and hybrid [6].

Multibiometric systems provide a variety of advantages against traditional
biometric systems and are able to encounter the performance requirements of
various applications [7]. The problem of non-universality is addressed, since suf-
ficient population coverage can be ensured by a multiple traits. Furthermore,
multibiometric systems can facilitate the indexing of large-scale databases, can
address the problem of noisy data and provide anti-spoofing measures by mak-
ing it difficult for an impostor to spoof multiple biometric traits of a legitimate
enroll individual.

In this paper we present a new multimodal biometric data acquisition plat-
form and security system. The proposed system uses fingerprint, face, voice and
palm geometry features of an individual for verification purposes. The paper is
organized as follows: Section 2 presents the single modality biometrics for voice
fingerprint and hand geometry. Section 3 describes the Biometrics Fusion. The
system is detailed in section 4 whereas Section 5 presents the evaluation of the
results and related discussion. Finally, conclusions and further work are stated
in Section 6.

2 Single Modality Biometrics

Multibiometric systems use multiple biometric modalities. A brief description of
biometrics that used for our system is given below.

2.1 Voice Biometrics / Extraction Method

Voice is the natural means of communication for human beings thus making
it the most convenient to use biometric. In addition, voice needs inexpensive
equipment for capturing and can be deployed in a variety of telephone-based or
internet-based applications where other biometrics are impossible to be deployed.
Voice biometric is utilized in this work in the form of text-dependent Speaker
Verification using concatenated phoneme Hidden Markov Models (HMMs) [8].
The experimental setup included the evaluation of the Speaker Verification per-
formance using the traditional Mel Frequency Cepstral Coefficients (MFCC)
[9], [10] while future experiments will involve the Perceptual Linear Prediction
(PLP) coefficients [11].

The procedure is initiated when the user is text-prompted a series of utter-
ances by the system in order to capture the speech samples. This procedure
is repeated both in the data capture phase where the multimodal biometric
database is created, and the verification phase where the captured speech of a
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specific user is verified against his HMM models or Voiceprint. A front-end fea-
ture extractor is incorporated to calculate the voice features, which are used for
both the enrolment and the speaker verification phase. In the enrolment phase,
speaker-specific phoneme models are created for each reference speaker. In the
speaker verification phase, the phoneme concatenation model corresponding to
the prompted single-digit sequence is constructed, and the accumulated likeli-
hood of the input speech frames for the model is compared with a threshold to
decide whether to accept or reject the speaker. In the case of successful speaker
verification, the features of the speech signal are stored for updating the HMM
models of the specific speaker. The approach is based on a simple vocabulary
consisting of a single digit numbers spoken continuously in sequences such as
“2-3-5-7-9”. The advantage is that by training HMM models for the phonemes
needed to construct all the single-digits of the vocabulary, the method can em-
ploy random sequences for authentication, and thus its robustness to impostors
is increased.

2.2 Fingerprint Biometrics / Extraction Method

Fingerprints are probably the more extensively studied biometric. Uniqueness,
permanence, easy acquisition and the small size of the acquisition devices (at
least the electronic ones) make fingerprints one of the most popular person iden-
tification methods. Usage of fingerprints in verification systems is not so common
because fingerprint acquisition has been related, for years, with criminal prosecu-
tion and, therefore, it raises user annoyance. This prepossession is getting lower,
however, mainly due to the extensive usage of fingerprints for user authentication
in popular computing systems such as laptops.

Characteristic fingerprint features are generally categorized into three levels
[12]: patterns, points and shape. Patterns are the global details of the fingerprint
such as ridge flow and pattern type. Although they are not unique, patterns are
useful for fingerprint classification into generic categories such as whorl, left
loop, right loop, etc. Points refer to the characteristics or minutiae proposed
by Galton [13] and include ridge bifurcations and endings. They have sufficient
discriminating power to establish the individuality of fingerprints. Finally, shape
features include all dimensional attributes of the ridge such as ridge path de-
viation, width, pores, edge contour, incipient ridges, breaks, creases, scars, and
other permanent details. It is claimed that shape features are permanent, im-
mutable, and unique according to the forensic experts, and if properly utilized,
can provide discriminatory information for human identification.

In the context of the proposed multibiometric system we do not enter into
a sophisticated feature extraction process for the fingerprint biometric. Instead
we have tried to combine level 1 (patterns) and level 3 (shape) features through
a smart combination of fractal scanning of image points and frequency analysis
of these points. The proposed fingerprint feature extraction method is simple
through powerful: A signature S (1D vector, see also Fig. 1(a)) is created for each
2D fingerprint image by using the well known Hilbert fractal [14] (see Fig. 1(b))
which is one of the most popular space filling curves. Then the power spectrum
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(a) (b)

Fig. 1. (a) Image signature using the luminance at sampled points, (b) Hillbert filling
curve for 2D points sampling

(a) (b)

Fig. 2. (a) Feature vector for a fingerprint image, (b) Contour approximation using 64
Fourier coefficients

PD(S) of the signature is computed over a set of frequency bands (see Fig. 2(a)).
The vector of power spectrum values in the various frequency bands is used as
feature vector for the fingerprint image.

2.3 Hand Geometry Biometrics / Extraction Method

Hand geometry biometric systems are becoming very popular for verification
purposes. Although hand geometry is not as unique as other biometrics (e.g.,
fingerprints), it is permanent and has not been related for criminal prosecu-
tion; therefore it is an acceptable method for verification for the great public. In
person identification systems hand geometry has been used mostly as a comple-
ment to fingerprints. However, in cases of small user population, hand geometry
biometrics are commonly used for authentication since they present acceptable
FAR and FRR rates. Hand geometry biometrics fall into two main categories:
geometric measurements and contour description. The automatic extraction of
geometric measurements from a hand geometry image is a rather difficult error
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pruned task. The method is more appropriate in a semi automatic environment
where a human user indicates the prominent points in the hand contour. Contour
description methods have in general lower accuracy but they are more robust in
automatic authentication processes.

In this study we have adopted a contour description approach because it is
faster and fits well in our multibiometric environment. Fourier descriptors [15]
provide a means to describe contours. The idea is to represent the contour as a
function of one variable, expand the function in terms of its Fourier series, and
use the coefficients of the series as the features.

Let us assume that the palm boundary coordinates (x(n), y(n)), n = 0, 1, ...,
N , have been extracted in the preprocessing stage. A complex sequence z(n) is
simply generated from the boundary coordinates:

z(n) = x(n) + jy(n) (1)

Taking the Discrete Fourier Transform of the sequence z(n) we get:

a(k) =
N−1∑
n=0

z(n) exp(
−j2πkn

N
), 0 ≤ k ≤ N − 1 (2)

a = [a(0)a(1)...a(N − 1)]T (3)

The values Fd(k) = a(k)
‖a‖ are called Fourier descriptors (please note that there

are several types of Fourier descriptors; all of are based on the previously stated
principle). It can be easily shown that the values Fd(k) are independent of trans-
lation, rotation and scaling.

In the current work we use a limited subset of the Fourier descriptors as the
palm geometry biometric:

â = [Fd(0)Fd(1)...Fd(M)]T , M << N (4)

It appears that an M equal to 64 provides an accurate description of the palm
contour which is free of noise (see Fig. 2(b))

3 Biometrics Fusion

An effective fusion scheme is required to combine the information presented by
individual modalities. Biometric fusion combines biometric characteristics and
can improve accuracy, robustness, fault tolerance and efficiency of a multibiomet-
ric system. Three levels of fusion are possible: (a) fusion at the feature extraction,
(b) fusion at the matching score level and (c) fusion at the decision level.

In the case of fusion at the feature extraction the features obtained from
each biometric is used to compute a multimodal feature vector which is used
for the biometric authentication. The second approach involves fusion at the
matching score level. For each biometric, the user is validated and a matching
score indicating the proximity of the feature vector with the trained model is
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calculated. These scores are then combined in order to verify the claimed identity.
The third approach which was used in this work is the fusion at the decision
or output level. The final decision is the fusion of individual accept or reject
decisions taken by each biometric method.

4 Multibiometric Data Acquisition

Acquiring multimodal biometric data can be a tedious and time consuming task.
The use of an integrated system which can provide data collection for a range
of different biometrics can greatly simplify the process. For this reason, we have
developed POLYBIO [16], a novel, automated system for multimodal biometric
data acquisition. The systems consist of two components: a) The Multimodal bio-
metric sensor hardware, and b) The Data Acquisition software. The multimodal
biometric sensor hardware integrates an array microphone for voice recording,
a digital USB web-camera for face still image and video capture, a USB digital
web-camera facing down accompanied by two lighting units and six positioning
pins on a black board for palm geometry and a USB optical Fingerprint Reader
[17] for fingerprint capture. The hardware component is connected to a PC via
a six port USB hub.

(a) (b)

(c) (d)

Fig. 3. Multimodal Biometric Data acquisition Software screens for (a) Voice, (b) Face,
(c) Palm, (d) Fingerprint
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The Data Acquisition software provides a user-friendly Graphical User Inter-
face and an automatic mechanism for capturing and storing data in a multimodal
biometric database. The software entails four interactive screens for voice, face,
palm, fingerprint data acquisition as illustrated in Fig. 3. The administrator can
insert a new, select or delete an existing user using the administrator console.
During acquisition, a new entry is created in the system database which contains
subfolders for voice, face, palm and fingerprint storage.

A multimodal biometric database was created which contains samples from
voice, face, palm and fingerprint for 30 individuals, 15 men and 15 women.
Five data capture sessions were stored for each biometric, four of which are
used for training and one for testing. The database is used for testing the four
biometric methods and for devising data fusion models for improving the overall
verification performance.

5 Experimental Results

In this section we present experimental results for biometric authentication based
on single modalities (voice, fingerprint, palm geometry) and through fusion of the
output scores. As mentioned earlier a multibiometric set of 30 individual was cre-
ated with three instances per subject used for template creation and the other one
for test. In the following paragraphs we describe the verification process in detail.

5.1 Voice Verification

Speaker verification performance of the system was evaluated using the MFCC
coefficients. Experiments were contacted to assess the effect that the number
of the utterances used for training speaker-specific HMM models have on the
speaker authentication performance. Tests were also performed to examine the
authentication decision threshold selection process and the normalization of
HMM scores through the use of a world model. Single Gaussian mixture HMM
models [18] were trained with 13 coefficient MFCC features which include delta
coefficients for each speaker using the four enrolment sessions of the database
while speaker verification performance was evaluated using 10 utterances from
each of the 20 speakers. Each speaker is authenticated against all 20 HMM
speaker models using all authentication utterances. The graph in Fig. 4(a) was
created by averaging speaker dependent HMM scores for each speaker. Axis X
shows the speakers attacking each model (impostors) while axis Y shows the
speaker dependent HMM models. Axis Z represents the averaged HMM scores
for each impostor-model combination. Shifting a horizontal plane along the Z
axis and each time taking the point of intersection with Z axis, we calculate the
False Acceptance Rate (FAR), False Rejection Rate (FRR) and hence the Equal
Error Rate (EER) [11]. In Fig. 4(b), the horizontal plane represents the thresh-
old for which FAR equals FRR for the specific experiment. It can be seen that
the prominent diagonal represents speaker identification for the 20 speakers.

Table 1 summarises the evaluation results. It can be seen that better per-
formance was achieved using four enrolment sessions for training and a world
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(a) (b)

Fig. 4. Averaged Speaker Verification Results

Table 1. Speaker Verification Results

Without World Model Enrollment Sessions
2 3 4

% EER 4.12 3.52 2.84
% FAR 4.12 3.53 2.82
% FFR 4.11 3.51 3.86
With World Model Enrollment Sessions

2 3 4
% EER 3.01 2.50 1.80
% FAR 3.00 2.50 1.82
% FFR 3.05 2.50 1.79

model. Even thought the best achieved EER=1.8% is not considered adequate
for a commercial system, at this stage of the project is acceptable since more
research will be performed utilising models with more Gaussian Mixtures, the
incorporation of acceleration coefficients, bootstrapping in the training of the
models, individual decision threshold for each speaker and Cepstral Mean Sub-
traction. It is expected that this research will result a significant drop in the
EER.

5.2 Fingerprint Verification

Let us denote with f
(k)
j the j-th fingerprint feature vector of the k-th subject.

We have already mentioned that in our experiments we have a population of
N = 30 subjects (that is k = 1,2,...,N ) and we use three instances (j=1,2,3 )
per biometric per subject. The fingerprint feature vectors f

(k)
j are the power

density values in several frequency bands, described earlier in Section 2.2. We
also denote with y(k) the feature vector used for testing. Due to the limited
number of training instances per subject (i.e., three) we consider as the biometric
template of the k-th subject the matrix:

F(k) = [f(k)
1 f

(k)
2 f

(k)
3 ] (5)
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It is obvious that many different templates can be constructed depending on
the number of training vectors. Gaussian models and Neural Network represen-
tations are among the most popular approaches for template construction and
user modeling. In our case we have implicitly consider that all training instances
serve as Support Vectors [19].

For each subject we also define a threshold:

T(k) = max
i�=j

(‖f(k)
i − f

(k)
j ‖) (6)

False Rejection (FR) and False Acceptance (FA) are then defined as:

FR : min
j

(‖y(k) − f
(k)
j ‖) > T(k) (7)

FA : min
j,l �=k

(‖y(l) − f
(k)
j ‖) < T(k) (8)

We evaluate the fingerprint biometric by using a four folder cross validation
approach. Three instances per subject were randomly selected and used as train-
ing patterns while the fourth was used for testing. We repeated this process for
20 cycles and the average results are shown in the Table 2 below (we report
also the experimentation on the number features used). The limited number of
training vectors leads to important FAR and FRR fluctuations. This is mainly
due to the adoption of a user specific threshold (see equation 6). Including an
outlier feature vector in the training set increases the threshold leading to a
loose model for the particular subject. This, in turn, increases the FAR for this
subject model and may also decrease the FRR. The availability of additional
training vectors will alleviate this problem since a more robust threshold would
be selected (i.e., based on first order statistics).

Table 2. Average FRR and FAR as a function of feature number for the fingerprint
biometric

Number of features
8 12 16 20 32

Average False 11.2 9.5 9.4 9.1 8.9
Rejection Rate (%) (±4.5) (±3.3) (±2.6) (±2.3) (±2.0)
Average False 14.3 12.6 10.1 9.4 9.0
Acceptance Rate (%) (±3.5) (±3.2) (±2.6) (±2.5) (±2.6)

5.3 Hand Geometry Verification

The approach followed for hand geometry verification is identical to the fin-
gerprint verification one. The feature vectors now correspond to the Fourier
Descriptors as already mentioned in Section 2.3.
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Table 3. Average FRR and FAR as a function of feature number for the hand geometry
biometric

Number of features
8 12 16 32 64

Average False 18.7 15.7 12.1 11.4 10.7
Rejection Rate (%) (±4.4) (±4.1) (±2.8) (±2.6) (±2.5)
Average False 16.0 15.5 14.8 9.9 9.9
Acceptance Rate (%) (±4.1) (±2.5) (±2.4) (±2.3) (±2.3)

Comparing the results of Tables 2 and 3 it is verified once again the claim that
fingerprints are more discriminative than hand geometry. However, the difference
is not high; this may be assigned to the simplified feature extraction method
adopted for fingerprints.

5.4 Multimodal Verification

Our main claim in this work is that multimodal verification can achieve high
performance in terms of both FAR and FRR even in cases where single modality
verification is not tune for best performance. This claim is supported by the
theory of weak classifiers combination [20] which led to powerful classifiers and
pattern recognition systems [21]. We combine the single modalities at the output
level using a simple voting scheme: A user is authenticated if the majority of
individual modalities vote for authentication and is rejected if the majority vote
against. Table 4 presents the FAR and FRR of the multimodal scheme. In the
experimentation we used feature vectors of M = 20 elements for the fingerprint
biometric and M = 32 elements for the hand geometry biometric. The voice print
template used is the one obtained via two enrolment sessions and without the
usage of World model.

Table 4. Comparison of single modalities and multimodal verification

Modality
Voice Hand geometry Fingerprint Multimodal

Average False Rejection
Rate (%)

4.11 11.4 9.1 0.86

False Acceptance Rate
(%)

4.12 9.9 9.4 1.23

The results indicate clearly the validity of multimodal verification. The best
of single modality FAR and FRR (voice biometric) are far away from the cor-
responding rates achieved via output level fusion. Furthermore, even the best
tuned modality (voice biometric with four enrollment sessions and using world
model) does not achieve (FAR = 1.79, FRR = 1.82) the rates obtained by mul-
timodal verification.
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6 Conclusions and Further Work

This study presents an integrated platform for multimodal biometric acquisition
for person identification. While the primary aim was to introduce the overall
systems we have also presented the methods we use for biometrics extraction
from voice, fingerprints and palm contour. It was shown through an experimen-
tal study that even weak single modality verification systems can lead to high
performance ones using simple fusion methods.

The work on biometric fusion is ongoing. We are currently experimenting on
alternative fusion methods including feature-based, score-based and rule-based
fusion. In addition we will explore alterative feature extraction methods, at least
for the fingerprint and hand geometry modalities. We seek to investigate what
happens in cases where highly-tuned single verification modalities are combined
through output voting schemes.

Acknowledgments. This work was undertaken in the framework of the POLY-
BIO (Multibiometric Security System) project funded by the Cyprus Research
Promotion Foundation (CRPF) under the contract PLHRO /0506/04.
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Abstract. Biometric technologies are being increasingly deployed in practical 
applications but are currently mainly driven by governmental initiatives,  
ranging from border control applications to national ID programmes, with in-
creasing social and legal impact on everyday’s life. However, biometrics offer 
wider opportunities and their application as enabling technology for modern 
identity management systems, having a more user-centred approach, will be 
more important in the near future. In this paper we give an overview of the most 
important research topics for Biometrics and Identity Management for the near 
future. 

1   Introduction 

Biometrics technologies are likely to have a rapidly increasing impact in the life of 
citizens, sometimes in ways that are yet to be understood. The full impact on security, 
privacy, accessibility and trust are yet to be established. While technological aspects 
of biometric systems will continue to be key to such developments, legal, cultural and 
societal issues will become increasingly important in addressing the shortcomings of 
current delivery and in preparing for future applications. 

In this overview1 a set of (most important) research actions is described which are 
essential for the wide spread use of biometrics for identity applications based on a 
desired balance of trust & security. References to the literature are added whenever 
the research topics can be clearly identified in the literature. 

                                                           
1 This research was supported by the BioSecure Network of Excellence. IST-2002-507634. 

Biometrics for Secure Authentication. 
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2   Technical Issues 

Nowadays several complete biometric identification/verification systems exist, from 
sensory data acquisition to user acceptance or rejection. They are based on a variety 
of biometric modalities, data acquisition and processing algorithms, with different 
performances and, in some cases, also using multimodal information. Nonetheless, 
there are still many open issues which need to be more deeply investigated, not only 
to reach better recognition accuracies, but also to increase the scalability, reliability 
and usability of current biometric systems. These are all factors which may be vital to 
allow an improved penetration of biometric technologies in the market and a wider 
introduction of these technologies in our E-society. The following actions are required 
at the (European) research level. 

2.1   Research Actions 

R.1. Improving robustness in user authentication and identity verification taking 
into account context awareness and the interoperability of distributed sensor 
systems [1,2,3]. 

R.2. New sensor technologies related to existing and well established modalities 
and to emerging modalities, including “smart” sensors capable of processing 
the data at the acquisition level. Bio signal acquisition for identification and 
physiological state recognition, including emotion recognition for affective 
computing [4,5,6].  

R.3. Research in the transparent use of biometrics (requiring no actions from the 
end-user). Algorithms enabling partial identity classifications like gender and 
age, allowing more anonymous ways of biometric authentication [7,8]. 

R.4. To develop quality measures to either establish the reliability of a single 
biometric score or to drive multimodal fusion [9,10,11,12].  

R.5. Research in protection and revocation of biometric templates, including the 
possibility to cancel the link between template and identity data, binding the 
template to the application allowing the user to use the same biometric  
modality for other enrolments [13,14,15,16,17]. 

R.6. Database testing and evaluation of biometric systems. The raise of new tech-
nologies and the exploitation of multi-biometrics, require the development of 
proper tools and data sets to assess the real merits and limitations of biomet-
rical systems [18,19,20,21].  

R.7. Research in the management of the user’s identity, which does not simply 
imply the creation and update of a biometric template, but requires the  
development of instruments to properly handle all the data and operations re-
lated to the user identity depending on a given communicational context 
(Biometrics, PKI and other identifiers and identity related attributes). This, in 
turn, requires the definition of different kinds of identities, such as “full” and 
partial identities, multiple identities, scalable and upgradeable identities, 
identity relations, [22,23], etc. Moreover, the secure and privacy friendly 
handling of identities may require the implementation of trusted parties and 
credentials to ensure the correspondence between the identity (either claimed 
or retrieved) and the “real” individual [24].  
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3   Applications and Standards 

Also, in many existing and new applications, such as e-commerce, e-banking and 
health monitoring, many urgent questions remain open. From an application perspec-
tive, such questions include: 1) Are biometric technologies yet ready to support  
citizens in handling their digital identity? ; 2) What impact can be expected from 
mandatory applications on the usage of various biometric modalities in everyday and 
ubiquitous applications?; 3) How can biometrics be used in reliable, user-friendly, and 
widely acceptable control mechanisms for checking the digital and “real” identity of 
an individual?; 4) How can biometrics be combined with more traditional approaches 
(such as PIN codes, passwords or tokens) for person authentication?; 5) How can 
biometrics engender trust in digital identities?; 6) What metrics are relevant for secu-
rity and “convenience-oriented” applications to guarantee biometric applicability in a 
large variety of business models capable of dynamic and seamless end-to-end integra-
tion of resources across a multiplicity of devices, networks, providers and service 
domains?  

The following actions are required at the (European) research level. 

3.1   Research Actions 

R.8. The development of design methodologies for biometric applications, user 
interfaces and usability including interaction design. Facilitating ease of  
interaction between user and system, especially with respect to the “outlier” 
groups which is fundamental to the concepts of inclusiveness and empower-
ment [25,26]. 

R.9.  Development of user centred applications for identity management includ-
ing the development to carry certain identity tokens e.g. in a handheld phone, 
allowing the possibility of data negotiation between system and end-user 
[27,28,29].  

R.10. The development of metrics to measure performances of biometrical systems 
rather then technologies. Tools to predict end user acceptance. Tools to  
assess the privacy/data protection aspects 2 [18,30,31,32].  

R.11. Methodologies to measure the added value (ROI) of biometrics comparing to 
alternative technologies. Enhanced cost/benefit analysis. Performance re-
quirements versus available products (testing, benchmarking). Long term 
maintenance costs and continuity [33] 

R.12. Integration at the system level [34,35,36] of: 

o quality of SDK’s and manuals; 
o performance of the biometric component once integrated into the 

system; 

                                                           
2 With respect to data protection this metric already exists: A given solution can be compliant 

to the law or not. The problem with data protection is that the judgment whether a given solu-
tion is compliant depends on the national data protection legislation and technological devel-
opment (state-of-the-art). 



 Nineteen Urgent Research Topics in Biometrics and Identity Management 231 

o user interfaces (ergonomics, GUI, etc.) ; 
o security of biometric data (storage, encryption); 
o interoperability. 

R.13. Coordinated actions for training & education. Better awareness for end users 
through information campaigns. Integration of the system and the actual run-
ning of the system by the operators, counting for both front end as for back 
end operators. Communication to get the operators and end-user to under-
stand and follow the required processes and procedures [37,38,43]. 

R.14. Closer collaboration between the research community and the world of stan-
dards development. The challenge is to build mutually supportive channels 
for interaction. Developing new standards that will address the gaps that  
currently prevent end-to-end interoperability [39,40,41]. 

4   Human Factors 

We need to expand our thinking from individual device performance through to con-
sidering the performance of the system as a whole - including the interaction between 
human and technology and social aspects of use. The following actions are required at 
the European research level. 

4.1   Research Actions 

R.15. The need for confidentiality, privacy, confidence and trust in the integrity of 
exchanged information is greater then ever. Application scenario’s need to 
put the user in the center of the application environment including fall back 
scenario's, openness, independent certification, ways of communication for 
possible verification of stored data by user's and other methods for user  
empowerment, liability, etc.  [42,43]. 

R.16. Methodologies allowing the user to have more control of the use of the iden-
tity data (in current applications as well as new smart environments) and 
transparency of identity management systems using biometrics. This in-
cludes methods to restore identities after identity theft3, non repudiation4 
[44], and countering of unintended “id-fusion” as a consequence of (inaccu-
rate) results from profiling and data mining [22,29].  

                                                           
3 For instance after “bio-phishing”: surreptiously obtaining a persons biometrics in order to 

pretend to be that person. 
4 The widespread use of biometrics can lead to increased forms of tracking and tracing of  

individuals, via what we will call “non-repudiation” use of biometrics. This aspect of biomet-
rics is not always so explicit. The non-repudiation aspect however of biometrical applications 
might become one of the most important issues for the (public) acceptance of biometrics as 
anonymity as an important facilitator of the private sphere often gets lost. Through the 
mechanism of non-repudiation end-users will have to be able to justify their actions more and 
more.  
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R.17. Other ways of user empowerment, whether by direct interaction and control 
of devices, or via delegation to an (ambient) intelligence that is able to pro-
vide sufficient feedback and information, allowing a user to perceive control 
of the biometric application [45]. Several research questions are relevant to 
this theme, including:  

o Enabling end users to easily set up and tailor the ICT based solu-
tions according to their own requirements; 

o Methods to assess user’s preferences of modes of interaction and 
control related to people’s background, personality profile, or gen-
der;  

o How shall the system respond to users’ expectations that may be too 
high or too low? How can the system advertise its competencies (or 
lack thereof) rather than relying on the user to find out by trial and 
error? ; 

o How can the system’s competencies be presented in a coherent and 
consistent manner in order to make its behaviour predictable? 

R.18. Definition and dissemination of privacy protection policies and legal meas-
ures, which could include: 

o Binding the biometrical template to a specific application, making it 
impossible to use in other domains (purpose binding) [15,46]; 

o Data Protection and encryption, proportionality and data minimiza-
tion [47]; 

o Avoidance of non repudiation; 
o Ethical framework; study on the impact of privacy & identity loss 

[48,49]); 
o Public awareness and communication. 

R.19. Coordinated action for public understanding of the advantages and limitations 
of the associated technologies, or the issues which allow the citizen to play a 
full part in their integration in society and enhance citizenship. Allowing the 
citizen to be fully empowered as a partner in the authentication process.  

5   Conclusion 

In this paper we summarized the most urgent research topics for Biometrics and Iden-
tity Management. These topics were also discussed during a round table discussion at 
the first workshop on Biometrics and Identity Management (BIOID 2008, May 2008) 
in Roskilde Denmark, and will be used for further improvements of the workshop. 
The current development of PKI and Biometrics and encryption may contribute to-
wards an application driven and user centered technology. It is the intention to further 
widen the multidisciplinary collaboration of experts in this field, inviting them to the 
next workshop (BIOID 2009) in Madrid, Spain. 
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Abstract. With an increase in identity fraud and the emphasis on se-
curity, there is a growing and urgent need to efficiently identify humans
both locally and remotely on a routine basis. The appearance of biomet-
ric identity documents such as passports, visas, national identity cards,
drivers’ licences and health insurance cards, has triggered a real need for
reliable, user-friendly and widely acceptable automated reference mech-
anisms for checking the identity of an individual. This paper presents
European perspective in advancing biometrics development as identi-
fied in the COST 2101 Action ”Biometrics for Identity Documents and
Smart Cards”. The main objective of the Action is to investigate novel
technologies for unsupervised multi-modal biometric authentication sys-
tems using a new generation of biometrics-enabled identity documents
and smart cards, while exploring the added-value of these technologies
for large-scale applications with respect to the European requirements in
relation to storage, transmission and protection of personal data.

1 Introduction

People are identified by three basic means: by something they have, something
they know, or something they are. Identity documents - things they have - are
tools that permit the bearers to prove, to a high degree of certainty, that they
are who they say they are. The security features of these documents vary widely
and some are easily duplicated. Fraudulent use is common. The use of biomet-
rics - something they are - can create a more reliable link between the identity
document and the bearer.

In response to the dangers posed by identity theft and fraudulent use of docu-
ments, a wide range of biometric technologies is emerging, covering for example:
face, fingerprint, iris, hand palm/geometry/veins, dynamic signature and voice
recognition. These are positive developments and they offer specific options to
enhance document integrity. Biometric identifiers, unique to each of us, can be
used to verify one’s identity. Biometrics - automated recognition of individuals
based on their biological and behavioural characteristics, is rapidly becoming a
common practice. A global breakthrough by biometrics in security technology

B. Schouten et al. (Eds.): BIOID 2008, LNCS 5372, pp. 236–244, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Biometrics for Identity Documents and Smart Cards 237

is imminent in terms of its use in identity documents and, in particular, corre-
sponding biometrically based controls. All over the world, states and groups of
states are creating the political and legal conditions for this.

When considering using smart cards with biometric systems, the smart card
should be viewed as a privacy-enhancing technology. The smart card is able to
augment the biometric identity verification system, providing a secure container
for the biometric template and having the ability to compute the biometric match
within the card rather than on external equipment. There is an expectation that
fundamental and applied research needs to be conducted into the current and
future practices and systems of establishing and using identity documents/smart
cards and to evaluate their effectiveness. Such research should answer four basic
questions:

1. What biometric technologies can help secure identity?
2. What threats to privacy do these technologies present, and how to manage

them?
3. How to overcome the apparent uncertainty, incompleteness, and inconsis-

tency of the flow of asynchronous data resulting from multi-modal biometric
sensory devices?

4. How to constantly adapt, learn and recognise information and knowledge
structures to deal with human-related variability, human-system interactiv-
ity and environmental fluctuations?

2 European Biometrics Challenge

Biometric person identity verification (biometric authentication) is a multi-
modal technology in its own right, with many potential applications. Every bio-
metric modality has some limitations. Authentication systems built upon only
one biometric modality may not fulfil the requirements of demanding large-
scale applications in terms of universality, uniqueness, permanence, collectability,
performance, acceptability and circumvention. A biometric system using single
modality may not be able to acquire meaningful biometric data from a subset
of users, for example visually handicapped or disabled people. One possible so-
lution to these problems is the endemic use of multiple biometrics. Multi-modal
biometric systems hold the promise of flexible and robust person authentication
avoiding person exclusion or discrimination.

All of the modalities used contain both physiological and behavioural com-
ponents. Currently, existing supervised multi-modal biometric interfaces (first
generation) take no or little advantage of a behavioural study of the user.
The presentation of any biometric characteristic to the sensor introduces a be-
havioural component to every biometric method. Interactive biometric systems
can be designed to facilitate proper presentation by providing feedback to users
during the presentation process. Such a technology is an essential component in
developing autonomous (unsupervised), intuitive biometric interfaces and con-
tributes towards stronger but user-oriented non-invasive automatic multi-modal
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authentication. The demand for new generation autonomous, interactive multi-
modal biometric systems is increasing dramatically because of security pressures
and the need for successful deployment of such unsupervised systems worldwide.

Autonomous interactive person authentication interfaces integrating several
sources of possibly corrupted biometric data (e.g. noisy, incomplete or incon-
sistent), represent without doubt one of the most challenging problems in the
field of multi-modal interfaces. Acquiring biometric data of sufficient quality and
suitability and using it for reliable decision making is of critical importance for
automatic biometric authentication. If quality can be improved, either by sensor
design, by user-interface design or by standards compliance, better performance
can be realised. For those aspects of quality that cannot be designed into the
system, an ability to analyse the quality of live biometric data is needed.

It is necessary to study, develop and assess unsupervised multimodal biometric
authentication interfaces in the context of identity documents and smart cards,
plus provide a diagnosis of the quality of biometric data and decision support
for efficient interaction with identified persons.

The biometric enhancement of identity documents and smart cards and their
global use in identity controls constitute a task on such a scale that experience
to date (e.g. with pilot projects on border controls with limited number of par-
ticipants) can, at best, provide only a rough estimate of the outcome. In view
of the volume of international travel and migration and the complexity of the
necessary technical, administrative and legal implementation, our present state
of knowledge and experience is still limited. It is expected that once the public
becomes accustomed to using biometrics at frontier borders, a diffusion effect in
commercial applications will be likely to follow. Consequently, there is an obvi-
ous need for fundamental research in the domain of a global system for biometric
authentication using identity documents and smart cards.

By definition, biometrics is multidisciplinary and the involved research issues
are intertwined. Therefore, one must distinguish between the technological, op-
erational and security aspects, and the privacy and legal issues. Today more
than ever, technology is an important means to enhance the efficiency of iden-
tity documents. When deploying a technology for this purpose, it must strike the
right balance between security, user convenience and privacy. In doing so, one
has to carefully assess the potential impact of the technology on the individual’s
fundamental rights and society. Creation of a common, scientifically founded
methodology for automatic collection and processing of sensitive biometric data
in identity documents should be determined by the application of the principles
of the Council of Europe Convention for the Protection of Individuals with regard
to Automatic Processing of Personal Data. There is no doubt that the decisions
taken today will have a long-lasting impact on citizens. This is certainly the key
challenge that has to be tackled with biometric technology - a fairly young, still
evolving technology. The deployment of biometrics in large-scale applications
(identity documents and smart cards such as passports, visas, national identity
cards, driver’s licences, health insurance cards etc.) must, therefore, be preceded
by a thorough multidisciplinary analysis.
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These will be achieved by having signal processing, pattern recognition, cryp-
tography, multi-sensory processing, human-machine interface, and legal experts
working and collaborating together. The impact of such collaboration is multiple,
as each partner is expected to benefit from the experience of the others either
in their own activity domain, or in closely related disciplines, by the integration
of new ideas and visions in their own research. As such, the collaboration of
industrial, academic partners and government agencies is expected to bring to
the table a well-balanced portfolio of competences.

One of the European goals is to converge on the common technologies in un-
supervised interactive multi-modal biometric systems dedicated to convenient
services using identity documents and smart cards. In order for this to hap-
pen, the country-specific cultural and legal issues have to be understood and
implemented.

3 European Perspective

The main objective of the European COST 2101 Action [1] is to investigate novel
technologies for unsupervised multi-modal biometric authentication systems us-
ing a new generation of biometrics-enabled identity documents and smart cards,
while exploring the added-value of these technologies for large-scale applications
with respect to European requirements in relation to the storage, transmission,
and protection of personal data. The Action has already started to benefit the
European community; individual European states; the providers of technology
for biometrics, identity documents and smart cards; providers of public and pri-
vate services; various security organisations wishing to use biometrics authen-
tication for the provision of access to services and confidential information by
authorised individuals. Either the challenges ahead are dealt with or the benefits
of this aspect of information technology for European countries will be limited.
The Action studies, develops and assesses unsupervised multi-modal biometric
authentication systems in the context of automated situation awareness, diagno-
sis of the quality of biometric data and decision support for efficient interaction
with persons who use identity documents and smart cards. It is focused on the
development of novel, second generation multi-modal biometric systems using
unsupervised, interactive interfaces and third generation multi-modal biometric
systems using transparent authentication. Its goal is to develop and integrate ad-
vanced interactive techniques for robust, multi-modal biometric authentication
interfaces based on the combinations of selected biometric modalities among face,
fingerprint, iris, hand palm/geometry, dynamic signature and voice recognition
which are subject to behavioural changes in person presentation and in ambient
environments. More specifically, it addresses the following main issues:

– What biometric templates and quality measures are required to ensure a
higher level of security and integrity of identity documents?

– What are the user-interface, operational, and security implications of bio-
metric technologies in terms of convenience and security in transactions,
large-scale deployments and fraud protection?
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– What is the legal framework for implementing these technologies and their
implications for personal security, protection of individual liberties and
preservation of lifestyle within our society?

– What is required to increase the citizen’s awareness of the potential benefits
of biometrics and its wide acceptability?

– What can be done for the introduction of appropriate standards and har-
monisation across Europe?

4 Research Focus

The overall task of the COST 2101 Action [1] is to investigate current and
novel technologies of identity documents and smart cards for unsupervised multi-
modal biometric authentication that feature robust and ergonomic interaction,
to recognise user reactions and respond to them intelligently and naturally, while
exploring the added-value of these technologies for large-scale applications. By
integrating research components into a real application, this Action will help
to further identify research priorities in the important area of interactive multi-
modal biometric interfaces, within the scope of an increasingly important world-
wide application domain of biometric authentication using identity documents
and smart cards. More precisely, the Action will focus on:

– Multi-modal biometric templates for next generation identity documents and
smart cards,

– Second generation multi-modal biometric authentication systems using un-
supervised, interactive interfaces,

– Third generation multi-modal biometric systems using transparent authenti-
cation, i.e. not requiring specific user interactions with sensors but requiring
smart remote sensing.

In all cases, the focus of the Action is on user convenience, intuitiveness
and comfort of biometric sensing, through multi-modal interfaces that are au-
tonomous and capable of learning and adapting to user intentions and behaviour,
in dynamically changing environments. Together with standardisation activities,
this COST Action aims at delivering original and innovative research in four main
areas:

1. Biometric data quality and multi-modal biometric templates,
2. Unsupervised interactive interfaces for multi modal biometrics,
3. Biometric attacks and countermeasures,
4. Standards and privacy issues for biometrics in identity documents and smart

cards.

It has become obvious that a specific fundamental research effort is needed
in the trans-disciplinary domain of adaptation of the state-of-the-art biomet-
ric techniques to the real-world environmental conditions and to user behaviour
when using identity documents and smart cards. This Action aims to fulfil these
requirements. It contributes to extending theoretical and applied experience in
the very important area of statistical modelling and ambient intelligence and,
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in particular, provides evaluation of the practical feasibility of new interactive
multi-modal biometric techniques for unsupervised systems.

4.1 Biometric Data Quality and Multi-modal Biometric Templates

The major technological aspect in this area is that there is a critical need to un-
derstand and exploit a variety of biometric modalities with respect to modelling
biometric data, creating templates of these models and scaling them to the needs
and limits of identity documents. The quality of biometric data, eventual fusion
of modalities and performance of the recognition systems for each modality are of
pivotal importance for this large-scale application. Consequently, there is a need
to develop a statistical understanding of biometric systems sufficient to produce
global statistical models useful for performance evaluation, scaling of users popu-
lation and predicting their performance for the given population. In this respect,
measures of effectiveness are focused on technical merits in terms of false accep-
tance and rejection rates, taking into account failures to enrol/acquire biometric
templates. The ability to deal with biometric data of changing quality in real-
world environments has not received due attention from researchers. Addressing
this issue is vital for unsupervised multi-modal biometric authentication systems
that operate on biometric data, usually affected by external conditions (e.g. light
and pose). Acquiring biometric data of sufficient quality and suitability and using
it for reliable decision making is of critical importance for automatic multi-modal
biometric authentication systems. One of the under-resourced issues is the sensi-
tivity of such systems to the degradation of sensory data. Generally, this Action
aims at increasing the robustness and reliability of multi-modal biometric in-
terfaces including quality and reliability measures of biometric modalities. It
assesses current quality and reliability measurement capabilities and identifies
technologies, factors, operational paradigms and standards that can measurably
improve quality and reliability of multi-modal biometrics.

4.2 Human Behaviour and Unsupervised Interactive Interfaces for
Multi-modal Biometrics

The main research themes of this area are the development of statistical and
probabilistic integration models based on multivariate approaches, grounding
theory, Bayesian networks and decision networks. Investigations cover a number
of ways in which the raw data, feature streams and recognisers being developed,
might interact. The essence of multi-modal biometric recognition is in the mon-
itoring of data, models and modalities and in combination of recognisers for
several feature streams. The essence of unreliable or miss-ing-feature processing
is in modifying the probability estimation in statistical models based on addi-
tional information on the biometric data quality. If some of the required features
for a single modality are unreliable (e.g. masked by noise) or missing, one can:

– compensate and rectify incoming data, or
– adjust or change the model for the given modality, or
– reject the data.
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Early rejection of the data in itself, if unreliable, can save a lot of processing
time. Upon rejection, the system can:
– re-acquire data from the same modality, or
– turn to different modality for additional evidence.

In order to re-acquire the data from the same modality it may be necessary
to prompt the user for assistance in the data collection process (e.g. pose ad-
justment to acquire the face image). Repeated prompts can be a frustrating
experience for the user. The expectation is that such an interactive system using
explicit models of reliability based on Bayesian networks and evidential reason-
ing will not only improve user satisfaction, but also improve user cooperation
resulting in higher system performance. Currently, existing biometric systems
take no or little advantage of the behavioural study of the user. Actually, the
analysis of the behaviour can provide the system with additional information
that can help to directly identify the person, as well as helping the process of
interactive data collection. For example knowledge about which behavioural pat-
terns can degrade the collected data and in what way, can help in the automatic
guidance of the user in the process of data acquisition. Human factors directly
impact error rates, and error rates directly impact the perceived recognition per-
formance of the system. Certain biometric modalities differ from the others in
the way the quality of the data depends on the behaviour of the person whose
identity is to be recognised. In particular, the way of placing oneself in the field
of view of the camera and placing the finger on the scanning device determines
to a large extent the quality of the data that the system operates on. In partic-
ular, face, fingerprint, iris, hand palm/geometry/veins, dynamic signature and
voice-based biometrics heavily depend on the user behaviour prior and during
the data acquisition step. The goal of this area is also to focus on user con-
venience and on the speed-up of multi-modal biometric sensing in large-scale
applications. Consequently, this area will address the problem of transparent
biometric authentication; that is, not requiring specific user actions, as a means
to enhance user convenience. In this part of the Action, the work includes inves-
tigations into how biometric authentication can be made transparent by using
smart remote sensing, and how the performance can be tuned to what is desired
for an application, by combining biometric measurements obtained either in par-
allel or sequentially. Known biometric authentication methods (e.g. face and iris
recognition) will be adapted to the situation of transparent authentication. In
the envisioned system the paradigm of transparency will be partially broken by
the introduction of a user prompt (presentation of a document or card). Bio-
metric data used for transparent authentication has a greater variability and a
reduced quality, which may result in a loss of recognition performance. Interac-
tive multi-modal biometric authentication using quality and reliability measures
are studied as a solution to this problem.

4.3 Biometrics Attacks and Countermeasures

To avoid unauthorised acquisition of biometric samples, encryption is consid-
ered for many biometric systems. There is also the question of what strength
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of encryption is appropriate and justified as a security measure. It is necessary
to provide communication security between the sensors, matchers and biometric
databases. Well-designed and well-implemented secure cryptographic protocols
should provide the required security for sensitive data exchange between parts
of a biometric identification or verification system. Therefore there is a need to
identify the constraints that the security protocol will impose on technology and
logistics. In this case, a risk-based approach addressing security concerns helps
to point out the limitations of such a system. Risk assessment can also play a
role in the analysis of the trade-off between greater security and issues such as
privacy (control over how and when we are represented to others). There is a
need to understand the processes used for the delivery of identity documents and
smart cards, the potential points of attack and the technological (i.e. encryption)
or procedural security measures to implement.

4.4 Standards and Privacy Issues for Biometrics in Identity
Documents and Smart Cards

The COST 2101 Action contributes widely to fundamental and applied research
and advancing the state-of-the-art, but standardisation in itself does not play the
central role in it. The work achieved in the Action will help establish a standard
in unsupervised multi-modal biometric authentication interfaces. By pushing
multi-modal biometrics beyond what currently exists, both within and beyond
Europe, the Action will reinforce the European leadership in the standardisation
process. The primary purpose of the legal part of the research is to assess the
need for legal instruments to counter the related new threats to privacy. The
privacy issues are tackled not only from a purely legal point of view, but also
from a more technological side. This specific approach is compelled by two rea-
sons: First, the necessity to comply with general requirements of personal data
protection against accidental or unlawful destruction or accidental loss, alter-
ation, unauthorised disclosure or access (see for instance ’security of processing’,
Article 17 EU Directive 95/46/EC); it is thus necessary to assess the appropri-
ate balance between protection prerequisites and effectiveness of the system. In
addition, not only mere technological measures should be taken into account but
also the organisational ones. Secondly: technological mechanisms should also be
considered in order to diminish or eliminate privacy infringements; therefore the
scope of the study also encompasses privacy-sympathetic technologies (notewor-
thy: anonymising techniques).

5 Conclusions

Many biometric technologies have evolved and there are many new products that
have been or are about to be launched. This recent market success, however,
has created greater challenges, as government and industry are more dependent
than ever on robust biometric identity verification tools and identity management
principles. There are both a market pull and a technology push that continuously
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bring the combination of identity documents/smart card technology and multi-
modal biometrics to the next level of maturity. In considering the possibility of a
global biometrics-based identity verification and management system, European
countries should think of electronic identity as infrastructure, like a railway,
electricity or transportation system.
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Although biometric systems have been in use for many years, it is only 
now that they are being introduced for use by the general pubic. The 
general public includes children, older people, people with disabilities 
as well as those not familiar with the local language. Some people will 
be first time users but many are likely to be occasional users. Therefore 
it is important that unsupervised systems can be used easily by such  
users. 

Biometric systems are being introduced to check whether: 

• The individual is the same person as the one to whom the card (or token) 
was issued. 

• The individual is on a ‘hot list’. 
• The individual is on a large database (possibly containing the whole  

population). 

These three different scenarios impose different constraints on the design of the sys-
tems. If a significant number of users cannot operate the system then alternative ar-
rangements have to be made for them to have access to the services; frequently this is 
going to involve a less secure process.  Therefore it is important to minimize the 
number of people who have to be treated as exceptional cases. 

In the United Kingdom, it is estimated that people with special needs (relating to 
the use of biometric systems) are: 

 Children (< 16 years)    20% 
 Older people (>65 years)    16% 
 People with disabilities    10% 
 Primary language not English   5% 
 Left-handed     10% 
 

However these figures do not indicate the variation between individuals in these 
groups. For instance, people with disabilities include: 

 Wheelchair users     0.4% 
 Cannot walk without an aid   5% 
 Reduced strength     2.8% 
 Reduced co-ordination    1.4% 
 Speech impaired     0.25% 
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 Language impaired    0.6% 
 Dyslexic     1% 
 Intellectually impaired    3% 
 Deaf      0.1% 
 Hard of hearing     6% 
 Blind      0.4% 
 Partially sighted     1.5% 

 

More than half of people with disabilities have more than one impairment, and this is 
particularly prevalent among the older population. 

The user needs to be able to locate and access the biometric terminal.  This will re-
quire appropriate clear signage, suitable lighting as well as access for wheelchair 
users. 

The instructions on the terminal must be positioned so that they can be easily read 
which also requires appropriate lighting and the use of a clear typeface.  The use of 
icons could help people who have problems in reading or understanding the language, 
but as yet there are no standard icons for this application area. 

With each biometric modality, there are different problems for some group of us-
ers. For instance, fingerprint readers require the user to have fingers, but there are 
other groups who may have problems (eg those who work with cement). Sometimes it 
is simply poor design of the terminal which causes problems.  For instance, some iris 
scanners require the user to look at a red dot - red can be problematic for some par-
tially sighted users and a dot can be difficult for those lacking central vision - a white 
cross as a target would have been usable by more users. 

In general, users will find it easier if there is a consistent user interface, and that 
adequate training has been provided in the use of the system.  For users with an intel-
lectual impairment this may require multiple training sessions. 

Biometric systems offer significant potential advantages to many people with dis-
abilities such as not requiring the user to remember or keep secret a personal identifi-
cation number. Good design of biometric terminals for people with disabilities will 
frequently be good design for all users. 
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Abstract. Biometrics could overcome – or at least have the potential for 
overcoming - all previous human recognition schemes, this may have unexpected 
consequences also for identity definition. There is  an inextricable link between 
the construction of the private sphere and the public recognition of individuals. 
We exist as individuals as far as we are able to represent ourselves as autonomous 
subjects. This is possible only as long as we are able to use recognized identities. 
Basically people need to create an inner space, which is called “private”. It is not 
essential that this space holds anything, yet it is essential that each individual has 
the impression that they own the keys to enter this space and have the power to 
open and close the door of this private realm. Privacy is not in what we hide but in 
having the power to hide something.   

Keywords: Privacy, Biometrics, Identity, Recognition. 

1   Introduction 

As a psychoanalyst who has been working since the early 1990s on ethical, political 
and social implications of emerging technologies, I have often found it helpful to use 
materials coming from my clinical practice to unravel certain aspects that have previ-
ously remained relatively underexplored by theoretical research and by standard em-
pirical studies. Of course clinical observations can hardly “prove” any argument,  
a great deal of the quality of evidence in psychoanalytic practice depends on the qual-
ity of the psychoanalyst and the sole instrument that a reader can have to evaluate it is 
the internal consistency of the author’s claim. There is no escape from strong ele-
ments of subjectivity in psychoanalytic reports but there is also a core of hard facts to 
work with.  

Some years ago, Kristine, a young lady suffering from anorexia, came to my ob-
servation. She was a tiny, pale girl, with slender legs, slim hips, small waist, who 
looked no older than fifteen although she was almost twenty six. Kristine claimed that 
she was attending the university, but actually she had passed just a couple of exams in 
more than five years. She lived at home with her parents and her life was completely 
invaded by a complex system of psychopathological symptoms, including the typical 
starvation-induced physical and psychological signs. She was aware of having some 
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kind of eating disorder and to be “skinny as a toothpick” but she refused the diagnosis 
of anorexia that she had received in previous psychiatric consultations. She claimed 
that she would have been happy to eat if only she did not feel sick. Kristine was con-
tinuously fighting against unpleasant thoughts which prevented her eating, if she ate 
she felt immediately obliged to vomit by a violent revulsion of the stomach. She could 
eat only when she succeeded in blocking her thoughts. When I asked her what kind of 
thoughts she found unpleasant, she easily admitted that she was referring to thoughts 
with some sexual content. Kristine has never had a boyfriend and her sexual experi-
ence was very limited, yet I discovered that she had no difficulty in being totally ex-
plicit when she speaks of sexual matters. 

After some months of treatment, Kristine told me a bizarre story. She was around 
seven when she started having the odd impression that her parents were able to read 
her mind and to see her feelings. Such a conviction developed little by little. At the 
beginning, when she started to suspect that her parents could understand her thoughts, 
she experienced a very pleasant and relaxing state because she felt that her wants 
could be always anticipated and met, and she was freed forever from the need to ask. 
But as time went by, this experience became increasingly painful. Kristine was slowly 
pervaded by a mounting sensation of restlessness and anxiety thinking that her 
thoughts were somehow public. She did not want her parents to discover such an 
uneasiness, she didn’t want them to be worried about her, but what could she do? 
They could read her mind! Kristine therefore decided to ban any mental content when 
she was in the same room with her parents. From that moment on, all her efforts were 
focused on reaching a perfect mental emptiness. Like a child Zen master, the little 
Kristine developed a number of meditation techniques, which were totally private 
because no one ever suspected her uncanny and secret exercise. With adolescence 
Kristine apparently recovered from her delusive belief and she felt free to think again, 
even in the face of her parents. But when she was around twenty she started suffering 
from “unpleasant thoughts”, which prevented her from eating, and her “anorexia” 
began. Any stupid psychoanalyst could realize that Kristine had turned her infantile 
fight against “public” thoughts into a fight against eating and that child mental empti-
ness has become a model for adult body emptiness. But the reason why Kristine was 
so afraid by her thoughts was still in the dark. Psychoanalysts are obvious people and 
they always think of sexual fantasies or traumas but Kristine did not suffer from any 
sexual assault or seduction, and her child fantasies were the same of thousands of 
children. Also the other card usually played by my colleagues – aggressive fantasies – 
led to nothing. Kristine stubbornly repeated that there was no reason why she should 
fear that her parents understand her thoughts because she had nothing to hide. 

It took a long time before I understood that she was literally right, the problem was 
indeed the she had nothing to hide, not only in a more obvious Freudian sense (she 
had no penis to hide) but in a deeper sense. Kristine was suffering from a constitutive 
deficiency of her private sphere. She felt as though she was truly transparent and her 
child effort to create mental emptiness was paradoxically her last resort to have some-
thing to hide, say to exist as an individual. In a pun, she was desperately hiding that 
she had nothing to hide.  
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Metaphors which describe the mind as an inner space, like a container or a box or a 
room, are ubiquitous and pervasive1. According to these metaphors we have an “in-
side”, which includes all our mental contents, distinct from an “outside”, which in-
clude the whole external world, other humans included. In order to have an identity, 
humans need to create such a mental space, their own private sphere, a restricted 
virtual, mental room where they feel to be able to hide something. This “hidden some-
thing” is – as I am going to illustrate in this paper – a vital component of each  
person’s individual, public identity.  

2   From Athens to Geneva 

The private/public distinction comes from moral and political theory. Private conduct 
is that which is no business of the law. Liberal theories made essential use of the pub-
lic/private category in assessing the permissible sphere of the law: the private realm is 
the realm of morality, where actions are not judged according to the law. In his semi-
nal contribution on the birth of the public sphere Jurgen Habermas2 has argued that 
the divide between public and private is a feature of modernity3. However the origin 
of the private/public distinction can be first traced in the Greek tragedy4. Privacy 
offers an apparent example of how we might “use” the past to illuminate the contours 
of the present. Classical Greece is an “other” place for us, a topos where we can  
confront the implicit patterns, structures, and practices of our own lives. 

Contemporary theoretical work5 on public and private spheres owes a lot to a novel 
reading of Greek civilization. Originally, the secret, private realm was the women’s 
realm, the maternal kingdom. This private realm (oikia), which included women, 
children, slaves and foreigners, was the place where the woman was accorded norma-
tive priority over males. When a man belonged to the maternal kingdom, to the pri-
vate sphere, he became idios, which means “one’s own”. Idiotes were private persons, 
individuals without any part in private affairs6. The negative sense carried out by this 
word remains in modern languages, as in the word “idiot” in English. Greeks had also 
two words to describe the public. One was still negative, the word demios, which 
precisely means “having to do with the people”, in the sense of vulgar persons, 
“populace”. Yet a second word for public had a highly positive sense, say, the word 
koinos, which literally means “what is shared by friends”. A man must share with his 
                                                           
1 George Lakoff’s conceptual metaphor home page, http://cogsci.berkeley.edu/ 
lakoff/ and John Barnden’s metaphor-of-mind databank, http://www.cs.bham.ac. 
uk/~jab/ATT-Meta/Databank 

2 Habermas, J.: The Structural Transformation of the Public Sphere: An Inquiry into a category 
of Bourgeios Society, Polity, Cambridge (1962 trans 1989) 

3 Actually the Habermasian public sphere is a normative ideal of democratic politics 
4 Sophocles Antigone is probably the best example of the way in which the polarity pub-

lic/private emerges from the tragedy , but generally speaking this tension is constitutive of all 
Greek culture  

5 Elshtain, J.B.: In particular post-modern and feminist scholars (1981); Robbins, B. (ed.) 
Public Man, Private Woman. Princeton University Press, Princeton (1993); The Phantom 
Public Sphere, Minnesota UP; Nussbaum M., The Fragility of Goodness: Luck and Ethics in 
Greek Literature and Philosophy, Cambridge, UP (1986) 

6 Moore Jr., B.: Privacy: Studies in Social and Cultural History. M.E.Sharpe Inc. (1984) 
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friends, and what he shares become “public affairs”. For ancient Greeks, open, public 
spaces, in the sense of koinos, were the realm of liberty, the sole sphere that was  
totally human, where human beings create their own laws, where they  are self legis-
lators, auto-nomos, autonomy.  

The deep, religious, sense of this polarity between private/woman/secret and pub-
lic/man/open is well illustrated by a fascinating Athenian religious ceremony, known 
as Arretophoria7. The Arretophoria (literally, “carrying of unnamed things”) was a 
female feast. Two small girls between the ages 7 and 11, known as arrephoroi, car-
ried out services for Athena for one year. At the time of year for the feast, the girls, 
wearing white robes and gold ornaments, received something in a chest from Athena's 
priestess. They put on their heads the baskets and carried the unknown things to 
Athena's gardens and left the items at underground caves. At the caves they received 
other veiled items and the priestess sent them away and sent other girls to the garden. 
Then the ceremony ended without revealing what the hidden items were. Some mod-
ern commentators think that the sacred chests contained cereal paste, representing 
snakes, phalli, and forms of men. Yet this has never been proved. No one knows what 
the sacred things were and even if there was actually anything in the chests. There is 
indeed also the possibility that the holy chests were simply empty and that there was 
nothing to hide, more precisely - as in Kristine’s case – that the chests were there just 
to hide that there was “nothing” to hide.   

The public/private distinction also owes a lot to Christian theology, in particular to 
Luther’s notion of individual conscience8. According to Luther, we have to under-
stand ourselves as each living "in two worlds over which different kings and different 
laws preside", the outer world, the civil kingdom, and the inner world, the spiritual 
kingdom. Each of us in the outer realm is involved, often it may seem inextricably, in 
having to deal with other men and women, in the organization and welfare of earthly 
society, in matters that demand human obedience and involve social and national 
Church and family loyalties. We live there under the pressure of laws laid down by 
legitimate external authorities. But always at the same time we live inwardly under 
another constraint. We live in debate with God alone. In the "inner forum of con-
science" we ourselves have to make the greatest decisions of life alone, in complete 
privacy and lonely personal responsibility before God.  

The Protestant Reformation implied the transformation of the Roman Catholic  
doctrine of salvation through good works into the radicalized Protestant doctrine of 
salvation through faith expressed in good work. Luther and Calvin demanded of their 
followers direct and forceful engagement in the world, in ordinary life. To be sure, 
traditional ascetic values such as piety, poverty and obedience  were not devalued but 
the search for them trespassed monastery walls (which were overruled and often liter-
ally demolished) to invade mundane life. The Reformation extended the Benedictine 
rule (“Ora et labora”) to daily life, universalized monastic discipline and surveil-
lance9. Indeed by emphasizing the individual’s relationship to God, the Reformation 

                                                           
7 Parker, R.: Polytheism and Society at Athens. Oxford UP, Oxford (2005) 
8 Edward, A.G.: Conscience and Its Critics: Protestant Conscience, Enlightenment Reason, and 

Modern Subjectivity. Toronto UP (2003) 
9 Walzer, M.: The Revolution of the Saints: A Study in the Origins of Radical Politics. Atheneum, 

New York (1976) 
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demanded of ordinary Christians that they attended to their salvation. Each individual 
assumed on himself the disciplinary role, which was previously reserved to the cleri-
cal hierarchy. Rather than disciplinary imposition from the authorities, discipline was 
turned inward, the external authority was internalized. On one hand the Reformation 
exalted the private sphere – eventually  the private realm is the place where one meets 
God, the sancta sanctorum; on the other hand in the Reformation the private sphere as 
such vanished. Think of the Arretophoria, think of the cella of Greek and Roman 
temples, think also, obviously, of the holy of holies in the Jerusalem temple: all those 
holy places were private and they remained as such forever. Still today no-one knows 
what unnamed things were there, or what the holy of holies exactly contained. On the 
contrary, like Kristine - the young lady suffering from anorexia - good Lutherans 
could not hide anything because there is nothing to hide.  The image of Adam and 
Eve who try to escape from God’s eyes after the fault is so famous that there is hardly 
the need to recall it, 

They heard God's voice moving about in the garden with the wind of the day. 
The man and his wife hid themselves from God among the trees of the  
garden.  
God called to the man, and He said, 'Where are you [trying to hide]?' 
'I heard Your voice in the garden,' replied [the man], 'and I was afraid  
because I was naked, so I hid.' 
[God] asked, 'Who told you that you are naked? Did you eat from the tree 
which I commanded you not to eat? 

The Reformation attitude to discipline and control reached its apogee in John Cal-
vin’s Geneva. Calvin was convinced of the corruption of humanity, its  willful error, 
and its capacity for destruction, and thus he courted a public system of discipline that 
instantiated rigid self-control10. All Geneva inhabitants had to renounce the Roman 
Catholic faith on penalty of expulsion from the city. Nobody could possess images, 
crucifixes or other articles associated with the Roman worship. Fasting was prohib-
ited, together with vows, pilgrimages, prayers for the dead, and prayers in Latin.  
Nobody could say anything good about the pope. It was forbidden to give non-
Biblical names to children. Attendance at sermons was compulsory, dramatic per-
formances were suppressed, except for plays given by schoolboys. Sexual immorality 
was chastised. There were to be no taverns; instead, places were provided for eating 
and drinking, in which pious behavior would be encouraged.  A great many spies 
were maintained, to report on matters of conduct and behavior.  What is still more 
remarkable, even the borders of family life - by definition the private realm – were 
crossed.  From 1545, there were domiciliary visits to supervise peoples’ life styles, 
and they were put on a regular semiannual basis in 1550. Yet one of the main aston-
ishing measures was architectural: during daily life large windows without curtains 
allowed Geneva residents, and Church officials, to check up on one another. Like in 
Bentham's Panopticon people were induced to believe that they could be watched at 
any time. Geneva citizens were, literally, under police supervision as though they 
were all “on parole” and indeed this was the deep, theological, sense of these rules: 
we all owe our sweat for Adam’s sin.  
                                                           
10 Wallace, R.S.: Calvin, Geneva and the Reformation. Baker Pub. Group (1990) 
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3   The “Nothing to Hide” Argument 

In a short essay published by the San Diego Law Review, George Washington Univer-
sity professor Daniel J. Solove recently examined what he called the “nothing to hide” 
argument11. When asked about government surveillance and data mining, many peo-
ple respond by declaring "I've got nothing to hide." According to the nothing to hide 
argument, there is no threat to privacy unless the government uncovers unlawful ac-
tivity, in which case a person has no legitimate justification to claim that it remain 
private. The nothing to hide argument and its variants are quite prevalent, and thus are 
worth addressing. As Solove explains, "the problem with the nothing to hide argu-
ment is with its underlying assumption that privacy is about hiding bad things." He 
warns, "Agreeing with this assumption concedes far too much ground and leads to an 
unproductive discussion of information people would likely want or not want to 
hide." Solove's bottom line is that this argument "myopically views privacy as a form 
of concealment or secrecy."  

The reality that privacy problems differ, "to understand privacy – writes Solove - 
we must conceptualize it and its value more pluralistically." The concept of "privacy" 
encompasses many ideas relating to the proper and improper use and abuse of infor-
mation about people within society. Privacy protects information not only because it 
would cause others to think less of the person at issue, but also simply to give us all 
breathing room: "Society involves a great deal of friction," Solove writes, "and we are 
constantly clashing with each other. Part of what makes a society a good place in 
which to live is the extent to which it allows people freedom from the intrusiveness of 
others. A society without privacy protection would be suffocation, and it might not be 
a place in which most would want to live." 

What is remarkable in Solove’s work is the radical rejection of the Calvinist under-
standing of privacy. What matters with privacy is not what we hide (actually we could 
have nothing to hide, as Kristine has, and as, may be, the young girls serving in the 
Arretophoria had), but the creation of a space where – at least theoretically - some-
thing could be hidden. In other words, the creation of the private sphere has more to 
do with people’s inner liberty than with a mere respect for their “sensible data”.  Hu-
mans are inherently social creatures, they live together with other humans and they 
develop in a social environment as all other primates. Since infanthood - with the 
basic experience of being plunged into a linguistic network without being able of 
speaking - human beings face the acute awareness of their dependence on other hu-
man beings. Such a dependence is destined to last quite a long time beyond the stan-
dard mother-newborn dependence in other species. Anthropologists call the tendency 
of mammalians to remain dependant on other individuals and to exhibit juvenile char-
acteristics also in later stages of life neoteny. Human beings present a higher level of 
neoteny. This is probably humans’ greatest resource, yet it is also an important reason 
for tension, conflict and stress. Dependence in the sense of having one’s wants cor-
rectly anticipated and met may be a pleasant state for a short period of life. But sooner 
or later frustrations and obligations entailed by dependence become too burdensome. 
 

                                                           
11 Daniel, J., Solove, D.J.: I’ve Got Nothing to Hide and Other Misunderstandings of Privacy. 

San Diego Law Review 44, 745–757 (2007) 
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From the beginning the young human being experiences failures in communication. 
Moreover she learns that there is no real way to control communication and to select 
messages sent to others. Our thoughts may “speak” independently from our conscious 
will. In other words we tend to communicate our thoughts through several languages 
that escape our conscious control (not entirely as a joke, this shows the reason why all 
regulations on data protection are destined to fail, humans are not fundamentally able 
to control data flows). Finally, not all desires and wants are fulfilled by others and the 
child learns quite rapidly that her needs and wants may remain unmet. Basically this 
teaches her three things: 1) There are other humans that may have different and con-
trasting wills; 2) Her inner desires need to be communicated to other humans in order 
to be fulfilled; and 3) Communication is always ambiguous, because it includes both 
explicit, voluntary, communication, and implicit, unconscious, communication. In 
brief, human beings learn that they are individuals (because they need and want inde-
pendently from other individuals) but that they belong also to various groups (because 
they can fulfill their needs and wants only if they communicate with other humans). 
The tension between these two poles is then expressed in different ways, as the ten-
sion between inner and external worlds; between explicit will and implicit desires; 
between private and public spheres. The unpleasant discovery that our wants can be 
misunderstood or frustrated has however also  a positive side. We realize that our 
thoughts and emotions are “private”, say, that they are contained in a mental space 
which is restricted and we own the key to this space (of course as in Kristine’s case it 
can happen that one does not have the feeling of control over the access to this mental 
space and that others can freely access it). 

4   Opacity vs. Transparency  

The “nothing to hide” argument represents just one aspect of the whole issue concern-
ing the definition of the private sphere. The “optical metaphor” of surveillance has 
generated not only a great deal of research on digital supervision, but also other dif-
ferent metaphors to describe the human experience. One of them is the metaphor of 
opacity and transparency. 

Serge Gutwirth and Paul De Hert have elaborated an interesting theory based on 
the categorization of legal and constitutional tools as opacity and transparency tools12. 
Writes Serge Gutwirth, “opacity tools embody normative choices about the limits of 
power while transparency tools aim at the control and channelling of legitimate or 
already normatively accepted power; while the latter are thus directed towards legiti-
mate uses of power, the former are indicating where power should not come (protect-
ing the citizens against illegitimate and excessive uses of power). Opacity tools are 
determining what is in principle out of bounds (‘no, but …’), hence, what is deemed 
so essentially individual that it must be shielded against interferences while transpar-
ency tools regulate exercise of power (‘yes, but …’) take into account that the  

                                                           
12 De Hert, P., Gutwirth, S.: IPTS-JRC-EC, Security and Privacy for the Citizen in the Post-

September 11 Digital Age. A prospective overview, Technical Report Series, EUR 20823 
EN, pp. 111–162 (2005) (Report to the European Parliament LIBE-Committee) (Retrieved 
from September 2005), ftp://ftp.jrc.es/pub/EURdoc/eur20823en.pdf 
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temptations of abuse of power are huge and empower the citizens and special watch-
dogs to have an eye on the legitimate use of power: they put counter powers into 
place. On the opacity side there is a prohibition rule which is generally, but not al-
ways (e.g. the prohibition of torture) subject to exceptions; on the transparency side 
there is a regulated acceptance. If we would apply the concepts to surveillance, the 
opacity approach would entail a prohibition of surveillance and imply a right not to be 
surveilled, while the transparency approach would regulate accepted surveillance and 
imply a right not to be under unregulated surveillance”13.  

Perception of opacity and transparency, as well as opacity and transparency tools, 
are undoubtedly a critical element in the definition of private sphere and its limits. 
Hannah Arendt was one of the earliest writers on privacy to note the blurring of the 
public and private realms with the rise of social life, and the increasing "manifoldness 
and variety" of the private realm in the modern age14. According to Arendt, privacy 
guarantees pyschological and social depth, containing things which cannot withstand 
the constant presence of others on the public scene; it undergirds the public by estab-
lishing boundaries, which fix identity; and it preserves the sacred and mysterious 
spaces of life. Some phenomena are different if they are not private: confessions of 
shame or guilt made public become boastful; over-disclosure becomes false, re-
hearsed; terror, a guilty secret; love and goodness are destroyed. On the other hand, 
"to live an entirely private life means above all to be deprived of things essential to a 
truly human life", so that to realize his full human potential and prevent catastrophe 
for mankind it is necessary for man to engage actively in public life.  

5   Public Recognition of Individuals 

There is an inextricable link between the construction of the private sphere and the 
public recognition of individuals. Most probably the need for recognition schemes 
started at the very beginning of human civilization, with the first urban societies in the 
Middle East and China, when societies became as complex as to require frequent 
interactions between people who did not know each other15. Obviously most people 
used to live within the borders of their village, or town, and did not need any identi-
fier. Yet persons that traveled outside of the confines of their home (e.g., military, 
sailors, traders) needed to be recognized and to recognize. 

A recorded description of physical appearances (e.g., body size and shape, skin and 
hair color, face shape, any physical deformity or particularity, wrinkles and scars, 
etc.) was probably the first way to recognize someone else, and to be recognized. 
However the body gets older, faces change, voices can be altered, scars fade; brief, 
description of physical appearances alone probably become inadequate as human 
interactions became more and more frequent and complex. The first recognition 
schemes were probably based on artificial and more permanent body modifications 

                                                           
13 Gutwirth, S.: Biometrics between opacity and transparency. Ann Ist Super Sanità 43(1), 61–65 

(2007) 
14 Arendt, H.: The Human Condition, Chicago UP (1958) 
15 Caplan, J., Torpy, J. (eds.): Documenting Individual Identity. Princeton UP, Princeton (2001) 



 Nothing to Hide – Biometrics, Privacy and Private Sphere 255 

(e.g., branding, tattooing, scarifications, etc)16 and analogical identifiers. An analogi-
cal identifier is a token, a symbol, which could be both a physical object (e.g., a pass, 
a seal, a ring, etc.) or a mental content (e.g., a password, a memory, a poem, etc.) 
which may be linked with only an individual or a category of individuals.  

The term "symbol" means "to bring together" and originally the Greek word for 
"symbol" meant a plank, which was broken, in order for friends to recognize each 
other by mail. For example, if a messenger came from a friend to ask for help, he was 
to bring the second part of the broken plank, and if it matched the first part, then in-
deed it was a meeting with a friend. 

The Roman Empire was the first cosmopolitan society in the west and was also the 
first example of a universal system for people recognition, which was mainly based 
on badges and written documents. In Middle Age Europe - where the majority of the 
population never went outside the immediate area of their home or villages - indi-
viduals were chiefly identified through passes and safe-conducts issued by religious 
and civil authorities. The genuineness of these documents was witnessed chiefly by 
seals and handwriting.  

The birth of large scale societies and the increased mobility associated with urbaniza-
tion imposed new recognition schemes. The first passports were issued in France by 
Luis XIV and by the end of the 17th century passports and ID documents had become 
standard. Yet only by the end of the 19th century, was a true passport system for con-
trolling the movement of people between states universally established. Various ID 
documents, passes, safe-conducts, seals and other tokens remained the main instruments 
to ascertain peoples’ identities in everyday life till World War I. In the 20th century, 
passports and ID cards - incorporating face photography, and in some cases also finger-
printing - became the primary tool for people recognition also within states, at least in 
those countries that made ID documents mandatory. Finally in late 1960s Automatic 
Identification and Data Capture Technologies (AIDC)17 emerged as the first true inno-
vation since the birth of photographic passports. However, it took some time because 
people understood that biometrics had a very special status among other AIDCs.  

6   Biometric Technologies  

Biometrics could overcome – or at least have the potential for overcoming - all previous 
human recognition schemes. Biometrics do not imply any artificial modification of the 
body as tattoos do. Neither are biometric systems based on analogical representations 
                                                           
16 The word "tattoo" is a borrowing of the Samoan word tatau, meaning to “strike something”, 

but also to “mark someone”. In the Pacific cultures tattooing had a huge historic significance: 
their full face tattoo called “moko” was a mark of distinction, which communicated their 
status, lines of descent and tribal affiliation. In the period of early contact between Maori and 
Europeans, Maori chiefs sometimes drew their “moko” on documents in place of a signature. 
In the West, Romans considered tattooing a barbaric usage. The Latin word for tattoo was 
“stigma”, and this tells a lot about the meaning of tattoos in Roman civilization. Romans 
used to mark criminals and slaves, and during the early Roman Empire all slaves exported to 
Asia were tattooed with the word “tax paid”  

17 AIDC encompasses a diverse group of technologies (e.g., RFID, matrix bar code, biometrics, 
smart cards, OCR and magnetic strips, and so) and systems that automate the capture and 
communication of data. AIDC technologies can be used both to identify items (as bar codes 
in a retail) and to recognize, track, and monitor individuals 
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(biometrics are not icons). A biometric system measures body parts, physiological and 
behavioral processes. Biometric systems generate digitalized representations of personal 
characteristics, say, digitalized tokens which link the individual observed here and now 
with reference data stored in a document, such as a travel document, or in a database. 
This is the real novelty of biometrics and what makes this technology revolutionary. For 
the first time in the history of human species, human beings have really enhanced their 
capacity for recognizing other people by amplifying - through technical devises - their 
natural, physiological, recognition scheme, which is based on the appreciation of a 
complex web of physical and behavioral appearances. Biometric technology aims to 
solidify this scheme, which would naturally be fluctuating, liquid, unpredictable, even 
arbitrary18.  

Biometric technologies also promise to liberate citizens from the “tyranny” of na-
tion states and create a new global, decentralized, rhyzomatic scheme for personal 
recognition. Today states keep in their hands the power to establish national identities, 
to fix genders, names, surnames, parental relationships and to assign rights and obli-
gations to individual subjects according to the names written on their identity docu-
ments. In his fascinating book on the history of passports ,John Torpey argues that 
“modern states, and the international state system of which they are a part, have ex-
propriated from individuals and private entities the legitimate means of movement” 
(p.4). Beginning with the French Revolution there has been an indivisible unity of 
national citizenship and individual recognition. The Declaration of Human Rights has 
created the modern concept of citizenship. The new democratic order is based on a 
direct, unmediated, relationship to the citizen. Universal rights and individual identity 
are the two sides of the same coin.  This new citizen is an unmarked individual who is 
uniquely and reliably distinguishable as an inhabitant of a nation-state, and not as a 
member of a guild, village, manor or parish. Other identity elements, which have been 
important in the past (e.g., religion, ethnicity, race, cast, etc), become, at least theo-
retically, less and less important. One of the main tasks (and sources of power) of 
modern states becomes to register birth certificates, to secure their authenticity, and 
fix citizenship accordingly.  

According to Torpey nation states have generated “the worldwide development of 
techniques for uniquely and unambiguously identifying each and every person on the 
face of the globe, from birth to death; the construction of bureaucracies designed to 
implement this regime of identification and to scrutinize persons and documents in 
order to verify identities, and the creation of a body of legal norms designed to adju-
dicate claims by individuals to entry into particular spaces and territories” (p.7).  This 
state of affairs could now be radically challenged. Globalization is characterized by 
the development of technologies (fiber-optic cables, jet planes, audiovisual transmis-
sions, digital TV, computer networks, the internet, satellites, credit cards, faxes, elec-
tronic point-of-sale terminals, mobile phones, electronic stock exchanges, high speed 
trains and virtual reality) which dramatically transcend national control and regula-
tion, and thus also the traditional identification schemes. Moreover the globalized 
world is confronted with a huge mass of people with weak or absent identities. Most 
developing countries have weak and unreliable documents and the poorer in these 
countries do not have even those unreliable documents. In 2000 the UNICEF has 
calculated that 50 million babies (41% of births worldwide) were not registered at 

                                                           
18 Lacan, J.: The French psychoanalyst, speaks of the instant du regard (the instant of the gaze) 

as the moment in which recognition and understanding merge 
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birth and thus without any identity document.  Pakistan, Bangladesh and Nepal have 
not yet made child registration at birth mandatory.   

In this scenario a personal identity scheme based on citizenship and birth certifi-
cates is less and less tenable. The tourist who wants to use the same credit card in any 
part of the globe, the asylum seeker who wants to access social benefits in the host 
country, the banker who moves in real time huge amounts of money from one stock 
market to another, they all have the same need. They must prove their identities, they 
must be certain of others’ identities.  But they can hardly rely on traditional means for 
proving identities such as birth certificates, passports or ID cards, etc. because these 
schemes are not dependable enough in most parts of the world and are unfit for global 
digital networks. Moreover biometric systems are the sole large scale identification 
systems that could also be run by small private actors and independent agencies in-
stead of heavy governmental structures. This first makes possible a global system for 
personal recognition, which would be closer to the Internet than to the Leviathan. The 
fear that biometrics might lead to a unique identifier - a digital cage  from which no 
one could ever escape – is probably misplaced. On the contrary biometrics permit to 
create separate digital IDs for particular purposes, by applying different algorithms to 
the same biometric characteristic.  

As well as providing the appropriate level of security for each application, this makes 
it much easier to revoke a biometric template and issue the user a new one if their digital 
identity becomes corrupted or is stolen. Still more important these processes do not need 
cumbersome, centralized, structures but can be easily implemented by a web of local 
authorities, as it has been indirectly demonstrated also by the astonishing penetration of 
biometric technology and applications in Asian and African markets . 

7   Conclusions 

The definition of the private sphere is part of the overall definition of one’s identity. 
We exist as individuals as far as we are able to represent ourselves as autonomous 
subjects. This is possible only as long as we are able to use recognized identities. 
Basically people need to create an inner space, which is called “private”. It is not 
essential that this space holds anything, yet it is essential that each individual has the 
impression that they own the keys to enter this space and have the power to open and 
close the door of this private realm. Privacy is not in what we hide but in having the 
power to hide something.   

The private space is made up of various different rooms. Some of these rooms are 
open, other are secluded, other are restricted. Identity recognition is one of the public 
instruments which allows to enter some of these rooms. In such a context biometric 
technologies hold a special place. They are indeed not only the keys but also the con-
tent of some private rooms. Biometric keys are not only instruments to open the doors 
but are in their turn also pieces of information about the individual. Biometrics are – 
mutatis mutandis – unnamed things that, like the obscure objects exchanged in the 
ceremony of the Arretophoria, carry on both opacity and transparency, both presence 
and absence. Their status cannot be easily categorized. Biometrics are public and 
private in the same while. This makes discussion on biometrics and privacy particu-
larly delicate and controversial, but also especially rewarding. 
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Alyüz, Neşe 47, 57
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Štruc, Vitomir 110

Theodosiou, Zenonas 216
Tistarelli, Massimo 67, 228
Todesco, Laetitia 140
Tome-Gonzalez, Pedro 181
Tsapatsoulis, Nicolas 216

Vielhauer, Claus 150
Vinck, A.J. Han 160
Vrabie, Valeriu 206

Zafeiriou, Stefanos 82


	Title Page
	Preface
	Organization
	Table of Contents
	Biometric Data Quality
	Quality-Based Score Normalization and Frame Selection for Video-Based Person Authentication
	Introduction
	Video-Based Face Verification
	Incorporating Quality Measures in Biometric Verification
	Q-Based Score Normalization
	0$^{th}$-Order Threshold Interpolation
	1$^{st}$-Order Threshold Interpolation

	Quality-Based Frame Selection
	Frontal Face Image Quality Measure
	Experimental Framework: BANCA Database
	Experiments
	Discussion
	Conclusions
	References

	Face Quality Assessment System in Video Sequences
	Introduction
	Face Detection
	Quality Assessment
	Pose Estimation: Least Out-of-Plan Rotated Face(s)
	Sharpness
	Brightness
	Image Resolution
	Choosing the Best Face in a Given Sequence

	Experimental Evaluations
	Conclusion
	References

	On Quality of Quality Measures for Classification
	Introduction
	Signal Quality and Quality Measures
	Experiments
	Additive Noise Model
	Multiplicative Noise Model

	Conclusions
	References

	Definition of Fingerprint Scanner Image Quality Specifications by Operational Quality
	Introduction
	IQS for Single Finger Scanners
	Impact of the IQS on the Recognition Accuracy
	Conclusions
	Reference


	Biometrical Templates: Face Recognition
	Modeling Marginal Distributions of Gabor Coefficients: Application to Biometric Template Reduction
	Introduction
	Gabor Feature Extraction
	Modeling Marginal Distributions of Gabor Coefficients
	Univariate Generalized Gaussians
	Bessel K Form Densities
	Comparing GGs and BKFs for Modeling Gabor Coefficients of Face Images

	Biometric Template Reduction
	Conclusions
	References

	Bosphorus Database for 3D Face Analysis
	Introduction
	Comparisons with Major Open 3D Face Databases

	Database Content
	Facial Expressions
	Head Poses
	Occlusions

	Data Acquisition
	Discussion of Data Quality
	Conclusion and Future Work
	References

	3D Face Recognition Benchmarks on the Bosphorus Database with Focus on Facial Expressions
	Introduction
	The Bosphorus 3D Face Database
	Face Recognition Methodology
	Landmarking
	Shape-Based Matchers
	2D Texture Matchers

	Experimental Results
	Conclusion
	References

	Identity Management in Face Recognition Systems
	Introduction
	Face Biometric Technologies
	Subspace Methods
	Elastic Graph Matching
	Dynamic Face Recognition

	Face Representations
	Face Representation from Single Images
	Face Representation from Video Streams

	Conclusions
	References

	Discriminant Non-negative Matrix Factorization and Projected Gradients for Frontal Face Verification
	Introduction
	Discriminant Non-negative Matrix Factorization Algorithms
	Non-negative Matrix Factorization
	Discriminant Non-negative Matrix Factorization

	Projected Gradient Methods for Discriminant Non-negative Matrix Factorization
	Solving the Subproblem (9)
	Solving the Subproblem (10)
	Convergence Rule

	Experimental Results
	Conclusions
	References


	Biometrical Templates: Other Modalities
	Discrimination Effectiveness of Speech Cepstral Features
	Introduction
	Bhattacharya Distance
	Experimental Procedures
	Speech Data
	Feature Parameter Representation
	Experimental Configurations

	Results and Discussions
	Text Separation Capabilities of Cepstra for Clean Speech
	Speaker Separation Capabilities of Cepstra for Clean Speech
	Text Separation Capabilities of Cepstra for Noisy Speech
	Speaker Separation Capabilities of Cepstra for Noisy Speech

	Conclusions
	References

	Multimodal Speaker Identification Based on Text and Speech
	Introduction
	Biometric Data Representation
	Multimodal Speaker Identification
	Experimental Results
	Conclusions
	References

	A Palmprint Verification System Based on Phase Congruency Features
	Introduction
	System Description
	Image Acquisition
	Image Preprocessing
	Feature Extraction
	Matching and Decision

	Experiments
	Database and Experimental Setup
	Parameter Tuning
	Performance Evaluation

	Conclusion and Future Work
	References

	Some Unusual Experiments with PCA-Based Palmprint and Face Recognition
	Introduction
	Experiments and Results
	Databases
	Preprocessing
	Palmprint- and Face-Recognition Systems with a Dependent Eigenspace
	Palmprint-Recognition Systems with an Independent Eigenspace
	Palmprint Recognition Using a Face Eigenspace and Face Recognition Using a Palm Eigenspace

	Conclusions
	References

	An Empirical Comparison of Individual Machine Learning Techniques in Signature and Fingerprint Classification
	Introduction
	Methods and Methodology
	Experimental Study
	Signature Database
	Fingerprint Database

	Discussion and Conclusions
	References

	Promoting Diversity in Gaussian Mixture Ensembles: An Application to Signature Verification
	Introduction
	Increasing Diversity in Ensembles of Stable Classifiers
	Changes to the Front-End
	Changes in the Sampling of the Training Set
	Change in Model Complexity
	Change in Scoring Procedure

	Application: A Gaussian Mixture Ensemble for Signature Verification
	Preprocessing
	Feature Extraction
	Modelling
	Diversity in the Ensemble

	Verification Experiments and Results
	Database
	Protocol
	Results

	Conclusions
	References


	Biometric Attacks and Countermeasures
	Advanced Studies on Reproducibility of Biometric Hashes
	Introduction
	Biometric Hashing
	Cryptographic Hash Functions vs. Biometric Hash Functions
	Biometric Hash Algorithm for Online Handwriting Biometrics

	New Performance Measures for Biometric Hashing
	Multi-semantic Hash Fusion Approach
	Evaluation
	Evaluation Database
	Evaluation Methodology
	Results

	Conclusions
	References

	Additive Block Coding Schemes for Biometric Authentication with the DNA Data
	An Additive Block Coding Scheme
	Structure of the DNA Data and Mathematical Model
	Verification of a Person Using the DNA Measurements
	Conclusion
	References

	Template Protection for On-Line Signature-Based Recognition Systems
	Introduction
	Biometric Template Security: State of the Art

	Signature-Based User Adaptive Fuzzy Commitment
	Enrollment Stage
	Authentication Stage

	Signature Recognition System Using Data Hiding
	Enrollment Stage
	Authentication Stage

	Experimental Results
	Experimental Results: Signature-Based Fuzzy Commitment
	Experimental Results: Signature-Based Authentication System Using Data Hiding

	Conclusions
	References

	Direct Attacks Using Fake Images in Iris Verification
	Introduction
	Fake Iris Database
	Fake Iris Generation Method
	Database

	Experiments
	Recognition System
	Experimental Protocol
	Results

	Conclusion
	References


	Biometric Interfaces, Standards and Privacy
	Evaluating Systems Assessing Face-Image Compliance with ICAO/ISO Standards
	Introduction
	The ISO/IEC 19794-5 Standard and the Tests Defined
	The Software Framework
	Experiments
	The Database
	Experimental Results

	Conclusions
	References

	Automatic Evaluation of Stroke Slope
	Introduction
	The Approach
	Experimental Results
	Conclusion
	References

	Biometric System Based on Voice Recognition Using Multiclassifiers
	Introduction
	Speaker Recognition System Overview
	Features Extraction
	Speaker Modeling
	Pattern Matching and Decision

	Proposed System Architecture
	Speaker Identification Text Independent System
	Word Identification Speaker Independent System
	Data Fusion
	Speaker Verification System

	Experiments
	Results and Discussion

	Conclusion and Perspectives
	References

	POLYBIO: Multimodal Biometric Data Acquisition Platform and Security System
	Introduction
	Single Modality Biometrics
	Voice Biometrics / Extraction Method
	Fingerprint Biometrics / Extraction Method
	Hand Geometry Biometrics / Extraction Method

	Biometrics Fusion
	Multibiometric Data Acquisition
	Experimental Results
	Voice Verification
	Fingerprint Verification
	Hand Geometry Verification
	Multimodal Verification

	Conclusions and Further Work
	References


	Position Papers on Biometrics and Identity Management
	Nineteen Urgent Research Topics in Biometrics and Identity Management
	Introduction
	Technical Issues
	Research Actions

	Applications and Standards
	Research Actions

	Human Factors
	Research Actions

	Conclusion
	References

	Biometrics for Identity Documents and Smart Cards: European Perspective
	Introduction
	European Biometrics Challenge
	European Perspective
	Research Focus
	Biometric Data Quality and Multi-modal Biometric Templates
	Human Behaviour and Unsupervised Interactive Interfaces for Multi-modal Biometrics
	Biometrics Attacks and Countermeasures
	Standards and Privacy Issues for Biometrics in Identity Documents and Smart Cards

	Conclusions
	Reference

	Accessibility of Unsupervised Biometric Systems
	References

	Nothing to Hide Biometrics, Privacy and Private Sphere
	Introduction
	From Athens to Geneva
	The $“Nothing to Hide”$ Argument
	Opacity vs. Transparency
	Public Recognition of Individuals
	Biometric Technologies
	Conclusions


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




